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1 Introduction

Stochastic mortality projection models are a useful tool in the quantification of the evolution of
mortality rates over time and the measurement and management of longevity risk, as Barrieu
et al. (2012) indicate. In this paper we put focus on the development of a fully stochastic
mortality projection model for annual data collected for the Belgian population. While this
is the most relevant perspective when valuing life contingent risks, mortality data can also be
monitored and analysed at a more granular level, see e.g. the weekly data monitored for Belgium
by Sciensano in the Belgian Mortality Modelling (Be-MOMO) project (Cox et al., 2010) and
the EuroMOMO project at European level.1

The development of mortality forecasting models has received wide coverage in the actuarial,
demographic and statistical literature, starting from the seminal work by Lee & Carter ([LC])
(Lee and Carter (1992)). Antonio et al. (2015) present a follow-up on the 2002 mortality study
of the former KVBA-ARAB (now: Institute of Actuaries in Belgium [IA|BE]) (see Lambrechts
(2001), Brouhns et al. (2002a), Delfosse and Boelen (2002)). Building upon the work of Konin-
klijk Actuarieel Genootschap (2014) ([KAG]), the IA|BE 2015 mortality projection model is a
fully stochastic projection model of Li & Lee ([LL]) type, see Li and Lee (2005). Hence, it is
a multi-population model that projects Belgian mortality rates using Belgian mortality data
together with observed mortality statistics gathered on a collection of European countries with
a similar standard of living. For each gender, a Lee & Carter model is imposed for the European
mortality trend as well as for the Belgian deviation from this common trend. By combining
mortality data from different, but comparable countries a more robust model with more stable
trends is constructed.

Antonio et al. (2017) provides an in-depth discussion of the multi-population mortality projec-
tion models produced by the professional actuarial associations in Belgium and the Netherlands.
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Next to a discussion of the technical foundations and model choices, the 2017 paper also sketches
four possible applications of the model: the calculation and projection of life expectancies (pe-
riod and cohort) to enhance insight in their future evolution, the calculation of actuarial pension
corrections as suggested by the Belgian Commissie Pensioenhervorming 2020-2040, the compu-
tations behind the Dutch legal retirement age updating mechanism, as well as an illustration of
the reserve calculations for a typical portfolio with pension liabilities.

Frequent updates of mortality projection models are key. These include the collection of new data
points as they unfold over time, the re-calibration of the model parameters, and - if necessary
- the incorporation of methodological changes to construct resilient forecasting models. In that
respect, KAG (2016, 2018) incorporates the correlation between the mortality trends of both
men and women. In the KAG (2020) report, two extra modifications have been made compared
to KAG (2018). First, an intercept is added to the time series model for the Dutch deviation
from the European mortality trend, for both males and females. Second, the calibration of the
Dutch deviation no longer uses data from 1970 but from 1983 on. However, Dutch data from
1970 is still used for the calibration of the European mortality trend.

Our report presents an update of the forecasting methodology used in Antonio et al. (2015) and
Antonio et al. (2017). In line with KAG (2016, 2018) we model male and female mortality data
jointly, within the multi-population Li and Lee model proposed for Belgium in Antonio et al.
(2015). In addition, we include an intercept in the time series to model the Belgian period effect
for males and females, in line with KAG (2020). Moreover, we investigate the effect of a higher
lag-order in the autoregressive time series process to model the Belgian period effect. We do
this to attain a long-term convergence between the Belgian mortality trend and the European
mortality trend and to investigate the sensitivity of the projection with respect to different time
series models. On top of that, we asses the uncertainty of some parameter estimates in the
calibrated model and in the time series dynamics by means of Poisson bootstrapping.

The necessity of frequent updates of mortality projection models is more relevant than ever in
light of the ongoing covid-19 pandemic. Our contribution includes annual data collected for the
Belgian population up to (and including) the year 2019. With a pandemic that reached Belgium
in 2020 and is still ongoing at the time of writing, it is difficult to assess the potential impact of
covid-19 on our forecasts. By creating virtual data points for 2020, incorporating the deaths as
observed until mid 2020, we assess this potential impact by recalibrating the proposed model on
the data enriched with the virtual data points. This impact assessment is covered in a separate
note.

This report is organized as follows. A technical description of the model and a discussion of
methodological changes compared to the 2015 mortality projection is provided in Section 2.
The use of the model and its applications are documented in Section 3. Section 4 quantifies the
impact on the cohort life expectancy in 2020, when making the step from the IA|2015 to the IA|
2020 model in terms of new data and methodological updates. Section 5 concludes. Tables with
parameter estimates and the resulting IA|BE 2020 mortality projection for Belgium are available
in an online appendix. Further, Appendix A documents the data sources used in this paper,
Appendix B motivates the choice of the calibration period, Appendix C deals with high-order
autoregressive time series processes and Appendix D discusses parameter uncertainty.
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2 Technical description of the model

2.1 Notation

Let X denote a collection of ages and T a collection of years. We denote with qx,t, for x ∈ X
and t ∈ T , the probability that a person who is alive at 1 January of year t, and who was born
on 1 January of year t− x, will be death on 1 January of year t+ 1. We call qx,t the mortality
rate at exact age x in year t. Stochastic mortality projection models either directly model (a
transformation of) qx,t or they model the force of mortality, µx,t. Under the assumption of
piecewise constant force of mortality, i.e. µx+s,t+s = µx,t for 0 6 s < 1, the following relation
holds between qx,t and µx,t:

qx,t = 1− exp (−µx,t). (1)

Expression (1) enables switching from the force of mortality to the mortality rate, and vice
versa, in a straightforward way. For more details about these concepts and additional reading
material we refer to Pitacco et al. (2009).

All the aforementioned quantities are referred to as being in ‘exact age’ or ‘period age’. They
apply to people who have exact age x at exact time t. As Cairns et al. (2016) indicate, one has
to be wary of any data quality issues when receiving data from different sources or even from the
same source at different times. For example, not all data sources work with the period or exact
age definitions, but instead apply ‘cohort’ or ‘completed years’ definitions. A cohort refers to all
people born in the same year. On 1 January of year t, a cohort born in year t− x− 1 will have
‘completed’ the exact age x and not reached age x + 1. As some institutions publish data on
deaths and exposures only in the cohort representation while others use the exact age definitions,
it will be necessary to establish a link between the cohort and period deaths and exposures. Such
a link enables to transform data from one format to the other, and is documented in detail in
Antonio et al. (2017). In this report we always use the period age definition unless explicitly
stated differently.

2.2 Data

In our study, we calibrate mortality models by using annual data on the observed number of
deaths, dx,t, and the corresponding exposures to risk, Ex,t, for a set of countries over a specified
calibration period and over a specified age range. We collect this data from three data sources.
The main data source is the Human Mortality Database2 ([HMD]). The second one is Eurostat3

for the years for which there is no data (yet) available in the HMD. We use the third data
scource, Statistics Belgium ([Statbel])4, to acquire the most recent mortality data for Belgium.

Further, we use a collection of 14 European countries, namely Belgium, The Netherlands, Lux-
embourg, Norway, Switzerland, Austria, Ireland, Sweden, Denmark, Germany, Finland, Ice-
land, United Kingdom and France. The selected countries are the ones with a Gross Domestic

2This database is available at www.mortality.org.
3Eurostat is the statistical office of the European Union, https://ec.europa.eu/eurostat. We download

the considered data sets at https://ec.europa.eu/eurostat/data/database.
4“Statbel, the Belgian statistical office, collects, produces and disseminates reliable and relevant figures on

the Belgian economy, society and territory.” (https://statbel.fgov.be/en)
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Product ([GDP]) per capita above the European average.5 In line with Koninklijk Actuarieel
Genootschap (2016, 2018, 2020) the collection of countries used in this report differs from the
set considered in Antonio et al. (2015) in two ways:

1. from 1970 on, we extend England & Wales with Northern-Ireland and Scotland to obtain
data from the United Kingdom as a whole. This facilitates collecting the necessary data.

2. in addition, from 1990 on, we add data from East Germany due to the German unification.
Hence, before 1990, we only use data from West Germany. From 1990 on, we work with
data collected for Germany as a whole.

We collect the data for age range {0, . . . , 90} and historical period {1970, . . . , 2018}. Later on,
we will extrapolate the calibrated and projected mortality rates towards higher ages using the
method of Kannistö (Kannisto, 1994). From the HMD database we use the tables ‘Deaths’ and
‘Exposure to risk’ in 1×1 format. These files contain the number of deaths and exposures for
the selected country per year, per sex and per age in period format. Eurostat only lists the
period number of deaths.6 However, we obtain the exposures in period format using databases
on the population size7 at 1 January of each year t, say Px,t, and the cohort number of deaths8,
say Cx,t, as defined according to the protocol of HMD.9 The cohort number of deaths Cx,t refers
to the number of people who were born in year t − x − 1 and died in year t. Adjusting to the
HMD protocol requires the following transformations:

Ex,t =
1

2
(Px,t + Px,t+1) +

1

6

(
1

2
Cx,t −

1

2
Cx+1,t

)
if x > 0

E0,t =
1

2
(P0,t + P0,t+1) +

1

6

(
C0,t −

1

2
C1,t

)
.

At Statbel, deaths are available in period and cohort format.10 Population sizes at 1 January
of each year t can be consulted as well on Statbel.11 In line with the transformations applied
to the data collected from Eurostat, we deduce the period exposures from the Statbel data by
following the above explained HMD protocol.

We proceed with a data set of deaths and exposures in period format for a collection of 13
European countries during the period 1970-2018 and for Belgium during 1970-2019. We extract
these data for males and females. For reproducibility reasons, Appendix A lists the date of the
last modification of each of the data sets used in this report.

5Source: World Bank Data for 2018 on GDP per capita in US dollar, https://data.worldbank.org/indicat
or/NY.GDP.PCAP.CD. The GDP per capita for the Euro area is 39,927.6 USD in 2018 and the fourteen countries
listed are the countries in Europe with a higher GDP per capita.

6This information is available at https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=demo mag

ec&lang=en.
7This database can be consulted at https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=dem

o pjan&lang=en.
8This database can be found at https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=demo mag

er&lang=en.
9This protocol is available from https://www.mortality.org/Public/Docs/MethodsProtocol.pdf.

10These databases can be downloaded from https://statbel.fgov.be/nl/themas/bevolking/sterfte-en-l

evensverwachting/sterftetafels-en-levensverwachting#figures
11See https://bestat.statbel.fgov.be/bestat/crosstable.xhtml?view=5fee32f5-29b0-40df-9fb9-af43

d1ac9032.
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We visualize the composition of the data set in terms of deaths and exposures in Figure 1. Figure
2 visualizes the evolution of the period life expectancies at birth for the 14 European countries
in the data set, downloaded from the HMD. We observe a more stable pattern in the evolution
of the life expectancies from 1970 on, motivating the start year of the data collection.
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Figure 1: The combined male and female exposures (left panel) and deaths (right panel) that are stacked
per country for all ages during the period 1970-2019 (Belgium) or 1970-2018 (other European
countries). The country with the largest exposure and deaths in the data set is at the bottom
of the graph. The black points indicate the combined male and female deaths and exposures
for Belgium.

2.3 Model specification

The mortality model structures the logarithm of the force of mortality for Belgium, µBEL
x,t , as

follows

lnµBEL
x,t = lnµEUx,t + ln µ̃BEL

x,t (2)

lnµEUx,t = Ax +BxKt (3)

ln µ̃BEL
x,t = αx + βxκt. (4)

We recognize two times a Lee & Carter specification; (3) is a LC model for the European
evolution of mortality (driven by µEUx,t ) and (4) is a LC model for the Belgian deviation from this

common trend (specified by µ̃BEL
x,t ). We calibrate this model on data with ages ranging from 0

up to 90, thus X = {0, . . . , 90}, and a calibration period from tstart up to 2018 for the European
mortality trend, denoted with T̄ = {tstart, . . . , 2018}, and up to 2019 for the Belgian deviation
from this European trend, say T = {tstart, . . . , 2019} . The calibration methodology is described
in Section 2.4. For the time dependent parameters, Kt and κt, the following time series models
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Figure 2: The evolution of the period life expectancies at birth for each of the 14 European countries
in the data set for males (right panel) and females (left panel) in the period from 1920 on.

are used

Kt+1 = Kt + θ + εt+1 (5)

κt+1 = c+ φκt + δt+1, (6)

for males and females. This leads to four stochastic processes (KM
t , κ

M
t ,K

F
t , κ

F
t ). The dynamics

of the common period effect (see (5)), Kt, are modelled with a Random Walk with Drift ([RWD]),
where θ is the drift and εt+1 is white noise. The Belgian period effect (see (6)) κt follows, in
contrast with the Antonio et al. (2015) model, an AR(1) process with intercept c. With this
methodological change the AR(1) parameter in the κt process no longer depends on the linear
identifiability constraint we impose on κt, see the discussion in Section 2.4. Moreover, by
including an intercept in the AR(1) process, the κt may converge to a non-zero value. This
allows for an extra gap, besides the age effect αx, between the long term projected mortality
rates for Belgium and Europe.

Further, in contrast to Antonio et al. (2015), we jointly model the time series dynamics for
men and women by assuming a multivariate Gaussian distribution with mean (0, 0, 0, 0) and
covariance matrix C for the error terms

(
εMt , δ

M
t , ε

F
t , δ

F
t

)
. We calibrate the parameters in

these time series specifications on the estimated Kt and κt parameters, for t ∈ T , and use these
dynamics to forecast µBEL

x,t for t ∈ {2020, 2021, . . . , tmax}. This projection strategy is documented
in Section 2.5.

2.4 Calibration

We calibrate the parameters (Ax, Bx, Kt, αx, βx and κt) in the LL specification using Maximum
Likelihood Estimation ([MLE]). Following the seminal paper by Brouhns et al. (2002b) we
assume a Poisson distribution for the number of deaths random variable Dx,t, with mean Ex,t·µx,t
and Ex,t the observed exposure to risk. To avoid identification problems in the LL model we use a
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conditional maximum likelihood approach as in Li (2013). We calibrate the common parameters
(i.e. Ax, Bx and Kt) in a first step, followed by the calibration of the Belgian parameters (i.e. αx,
βx and κt) in a second step.

1. Observed deaths to calibrate the European trend, dEUx,t , and corresponding exposures to

risk, EEU
x,t , are obtained from the Human Mortality Database and Eurostat (see Section 2.2)

by aggregating deaths and exposures over the 14 selected countries, using X = {0, . . . , 90}
and T̄ = {tstart, . . . , 2018}. We maximize the following Poisson likelihood

max
Ax,Bx,Kt

∏
x∈X

∏
t∈T

(EEU
x,t µ

EU
x,t )d

EU
x,t · exp (−EEU

x,t µ
EU
x,t )/(dEUx,t !), (7)

with µEUx,t = exp (Ax +BxKt). We apply the Lee & Carter parameter constraints to identify
parameters in a unique way, namely

∑
t∈T Kt = 0 and

∑
x∈X B

2
x = 1.

2. We have data for Belgium up to 2019 and for the other 13 European countries up to 2018.
We want to include the most recent data of Belgium to calibrate the mortality model.
Therefore, we linearly extrapolate the parameter estimates Kt for the year 2019:

K2019 = K2018 + (K2018 −Ktstart)/(2018− tstart).

The linear extrapolation is justified by the linear pattern of the estimated Kt parameters,
as can be seen in Figures 3 and 5.

3. We calibrate the parameters for Belgium (i.e. αx, βx and κt) by maximizing the following
Poisson likelihood, conditional on the common parameters estimated in step 1 of this
procedure. Thus,

max
αx,βx,κt

∏
x∈X

∏
t∈T

(EBEL
x,t µBEL

x,t )d
BEL
x,t · exp (−EBEL

x,t µBEL
x,t )/(dBEL

x,t !), (8)

where µBEL
x,t = µEUx,t · exp (αx + βxκt). We calibrate the parameters for Belgium on ages

X = {0, . . . , 90} and years t ∈ T = {tstart, . . . , 2019}. Once again we normalize the
estimated parameters by imposing

∑
t∈T κt = 0 and

∑
x∈X β

2
x = 1.

We apply this calibration strategy12 separately for males and females. We illustrate the resulting
parameter estimates for male data in Figure 3 (European parameters) and Figure 4 (Belgian
parameters). Figures 5 and 6 show the corresponding results for females. An online appendix
coming with this report lists all parameter estimates.

2.5 Projection

Calibrating the time series models. The mortality model specified in Section 2.3 together
with the time dynamics specified in (5) and (6) allows to generate future scenarios of mortality.
First, we calibrate the time series models to the parameter estimates {(Kt, κt) | t ∈ T } with
T = {tstart, . . . , 2019} simultaneously for males and females. As explained in Section 2.3, we
hereby assume a multivariate Gaussian distribution for the error terms

(
εMt , δ

M
t , ε

F
t , δ

F
t

)
with

mean (0, 0, 0, 0) and covariance matrix C. The error terms are independent and identically
distributed for all t. The parameters θM , θF , cM , cF , φM , φF and C, used in the time series
specifications, are estimated using maximum likelihood.13

12We use routines written in R.
13In R we use Seemingly Unrelated Regression through the package systemfit, we use the function systemfit

with options method="SUR" and methodResidCov="noDfCor".
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Stability of the AR(1)-process. κt tends to the intercept c when t tends to infinity if the
AR(1) process in Equation (6) is stable. That is: the parameter estimate φ̂ in this AR(1) process
should be smaller than 1 in absolute value. Initial experiments with a calibration period starting
from 1970 on illustrated that this stability is not always safeguarded. We propose in Appendix
B and C two solutions for this issue:

1. adjust the calibration period by increasing the start year of the calibration period.

2. increase the lag of the autoregressive process in order to find a stationary and stable AR(k)
process for the Belgian period effect κt.

Based on the findings in Appendix B and C we opt for the adjusted calibration strategy, leading
to the same start year 1988 in calibration periods T̄ (European mortality trend) and T (Belgian
deviation trend).

2.6 The resulting mortality projection model

We calibrate the proposed LL mortality model on the chosen calibration periods T̄ =
{1988, 1989, . . . , 2018} for the European mortality trend and T = {1988, 1989, . . . , 2019} for
the Belgian deviation of this trend. The choices are motivated by the findings in Appendix B
and C. The estimated parameters Âx, B̂x, K̂t, α̂x, β̂x and κ̂t are shown in Figures 3, 4, 5 and
6 for both males and females. Table 1 lists the adjusted parameter estimates in the time series
specifications for K̂M

t , κ̂Mt , K̂F
t and κ̂Ft , including the estimated four-dimensional covariance

matrix of the error terms Ĉ. As expected, the AR(1) parameter in the time series for the male
and female Belgian period effect is now smaller than one. This leads to stable AR(1) processes
for the time series of κ̂Mt and κ̂Ft . Because of the inclusion of the long-term gap c and the age
effect αx in the Belgian deviation trend κt, we do allow for a potential gap between the European
and Belgian mortality rates on a long-term basis.

θ̂(BEL) ĉ(BEL) φ̂(BEL) Ĉ
(BEL)

εMt δMt εFt δFt
Male -0.2285 0.0140 0.9682 εMt 0.0291 0.0014 0.0353 0.0058

δMt 0.0014 0.0249 -0.0016 -0.0096
Female -0.1882 -0.0240 0.9226 εFt 0.0353 -0.0016 0.0458 0.0089

δFt 0.0058 -0.0096 0.0089 0.0211

Table 1: Time series parameter estimates using European and Belgian data, male and female data, ages
0-90, years 1988-2019.
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Figure 3: Estimated common parameters, male data, ages 0-90, years 1988-2019: Âx, B̂x and K̂t.
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Figure 4: Estimated parameters for Belgium, male data, ages 0-90, years 1988-2019: α̂x, β̂x and κ̂t.
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Figure 5: Estimated common parameters, female data, ages 0-90, years 1988-2019: Âx, B̂x and K̂t.
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Figure 6: Estimated parameters for Belgium, female data, ages 0-90, years 1988-2019: α̂x, β̂x and κ̂t.

Goodness-of-fit Next, we examine the goodness-of-fit of our proposed mortality model by
constructing a heatmap of the Pearson residuals for males and females. In the case of Poisson
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regression, the Pearson residual for the observed death count dBEL
x,t is defined as:

dBEL
x,t − EBEL

x,t µ̂BEL
x,t√

EBEL
x,t µ̂BEL

x,t

.

Figure 7 displays the corresponding heatmaps. Overall the model captures the period and age
effects very well. However, we observe one cohort-effect in the Pearson residuals, starting around
the age of 70 in 1988. We decide not to include cohort effects in our mortality model for three
reasons. First, the diagonal trends in these heatmaps are limited and, second, mortality models
with cohort parameters are known to be less robust. Third, cohort parameters are more difficult
to project with meaningful time series specifications (see the discussion in Antonio et al. (2017)).
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Figure 7: Heatmaps of the pearson residuals resulting from the constructed mortality model for males
(left panel) and females (right panel): ages 0-90, years 1988-2019.

Generating future scenarios of mortality. Future mortality scenarios can be generated
using the following step by step approach. For each future scenario i = 1, . . . , N , and with t
running from 2020 to some specific end year tmax, we use the following strategy.

1. We simulate future (KM,i
t , κM,i

t ,KF,i
t , κF,it ) using the time dynamics specified in (5)

and (6), with parameter estimates as listed in Table 1. We hereby start with
(K̂M

2019, κ̂
M
2019, K̂

F
2019, κ̂

F
2019) as obtained with the calibration strategy from Section 2.4.

These values are listed in the online appendix. We generate (εMt , δ
M
t , ε

F
t , δ

F
t ) from a mul-

tivariate Gaussian distribution with mean (0, 0, 0, 0) and covariance matrix Ĉ, as listed in
Table 1.

2. Using the simulated (KM,i
t , κM,i

t ,KF,i
t , κF,it ) for t = 2020, . . . , tmax, we obtain µBEL,i

x,t using

(2), (3) and (4) and the age specific parameter estimates (Âx, α̂x, B̂x, β̂x).

Figure 8 illustrates the projection of the time dependent parameters Kt and κt for males and
females. We generate 10 000 scenarios and show the corresponding fan charts (formed by the
median, 0.5% and 99.5% quantiles).
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Figure 8: Projection of time dependent parameters: Kt and κt, male (left) and female (right) data, ages
0-90, years 1988-2070. We plot 0.5% quantile, median and 99.5% quantile obtained from 10
000 simulations.

Closing for old ages. We use Kannisto (1994) to close each mortality scenario for old ages,
say x ∈ {91, 92, . . . , 120}. This mortality law is chosen from a comparative analysis of techniques
to close mortality tables, documented in Antonio (2012). This parametric law specifies the force
of mortality in each scenario i, for ages x > 90 and a specific year t, as follows:

µix,t =
φi,t1 exp (φi,t2 x)

1 + φi,t1 exp (φi,t2 x)
. (9)

We estimate (φi1, φ
i
2) for each scenario i and year t using the relation (see Doray (2008))

logit µix,t = log (φi,t1 ) + φi,t2 x, (10)

which we estimate with OLS on the ages x ∈ {80, 81, . . . , 90}. The estimates for (φi,t1 , φ
i,t
2 ) are

then used in (9) to close the generated mortality scenario for ages x > 90.

Finally, we can switch to scenarios for future mortality rates using the transformation in (1),
thus

qix,t = 1− exp (−µix,t), (11)

for t = 2020, 2021, . . . , tmax and x ∈ 0, 1, . . . , 120.
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3 Results, backtests and applications

3.1 Fitted and simulated mortality rates

Figure 9 shows the calibration of qx,t for Belgian males and a selection of ages x ∈ {25, 45, 65, 85}.
Figure 10 shows the corresponding results for females. We show the median and 99% pointwise
confidence intervals based on 10 000 scenarios of projected mortality rates. The black dots in
this Figure are the observed mortality rates qx,t over the calibration period {1988, . . . , 2019}.
The dotted line indicates the mortality rates fitted with the model specified in Section 2.3. As
a reference line we add the projection 2019-2070 of Federaal Planbureau (2020) ([FPB]).14 The
qx,t’s in the FPB table are defined at age in completed years and have been transformed to qx,t’s
at exact age, using the transformation documented in Jaumain and Vandeschrick (2012).15 The
FPB model is a deterministic model, and its calibration does not follow the nowadays standard
assumption of Poisson likelihood for the number of deaths. The projection of FPB is using the
calibration period 1991-2018, whereas earlier projections of the FPB were using a calibration
period starting in 1970.16
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Figure 9: Estimated and projected mortality rates, q̂x,t, for Belgium, male data, ages 25, 45 (top row)
and 65, 85 (bottom row), calibration period 1988-2019, projection 2020-2070. We plot 0.5%
quantile, median and 99.5% quantile obtained from 10 000 simulations.

14We use the Prospectieve sterftequotiënten 2019-2070 available on https://www.plan.be/databases/databa

se det.php?lang=nl&ID=50 (tab Qx-M and Qx-F in the excel file qx bel nl.xlsx). The methodology is described
in Federaal Planbureau (2009).

15We use formula (6) and (9) on page 11 of Jaumain and Vandeschrick (2012).
16See Federaal Planbureau (2009) on page 2.
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Figure 10: Estimated and projected mortality rates, q̂x,t, for Belgium, female data, ages 25, 45 (top
row) and 65, 85 (bottom row), calibration period 1988-2019, projection 2020-2070. We plot
0.5% quantile, median and 99.5% quantile obtained from 10 000 simulations.

3.2 The IA|BE 2020 mortality projection for Belgium

The projected mortality table obtained with the best estimates of future (KM
t , κ

M
t ,K

F
t , κ

F
t )

(with t = 2020, 2020, . . . , 2070) is the resulting ‘IA|BE 2020 mortality projection for the Belgian
population’. These best estimates for the period effects result from (5) and (6) with noise terms
εMt = 0 = δMt and εFt = 0 = δFt for all future t. We close the mortality table obtained in this
way with Kannisto (1994) such that µx,t for x ∈ {0, 1, . . . , 120} and t ∈ {2020, . . . , 2070} result.
The corresponding mortality rates qx,t follow from (1). This table is available online for males
and females.

3.3 Life expectancy: period and cohort

From the simulated scenarios for future mortality rates we obtain simulations for the period as
well as cohort life expectancy. Using the assumption of piecewise constant force of mortality,
the period life expectancy for an x year old in year t is

eperx (t) =
1− exp (−µx,t)

µx,t
+
∑
k>1

k−1∏
j=0

exp (−µx+j,t)

 1− exp (−µx+k,t)
µx+k,t

, (12)

and the cohort life expectancy for an x year old in year t is

ecohx (t) =
1− exp (−µx,t)

µx,t
+
∑
k>1

k−1∏
j=0

exp (−µx+j,t+j)

 1− exp (−µx+k,t+k)
µx+k,t+k

, (13)
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see, for example, Pitacco et al. (2009). Using the mortality scenarios generated as described
in Section 2.5 we obtain simulations of the period and cohort life expectancy, say eper,ix (t) and

ecoh,ix (t). Scenarios can be generated beyond 2070. Thus, when calculating life expectancies in,
for example, 2070, we will project the mortality rates for 120 years after 2070. To construct
a point estimate for the period and cohort life expectancy, we use the best estimate table
introduced in Section 3.2.

Figure 11 shows the observed period life expectancy (black dots) for a 0 (left) and 65 (right)
year old male (top panels), the calibrated period life expectancy (red line) and the simulations
of e0(t) and e65(t) for t = 2020, . . . , 2070. The blue fan chart shows the cohort life expectancy,
ecoh0 (t) and ecoh65 (t). The corresponding results for females are shown in the bottom panels of
Figure 11.
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Figure 11: Period (black dots and red lines) and cohort (blue) life expectancy for a 0 year old (left)
and 65 year old (right), male (top) and female (bottom) data. Mortality model calibrated
on male and female data, ages 0-90, years 1988-2019 and closed with method of Kannistö.
We plot 0.5% quantile, median and 99.5% quantile obtained from 10 000 simulations.

Table 2 lists the median and 99% confidence intervals of ecohx (t) for some specific choices of x
and t. As a benchmark the table also shows the cohort life expectancies published by Federaal
Planbureau (2020).17 We transform these from ages in completed years to exact ages, using
Jaumain and Vandeschrick (2012).18

Inspired by Koninklijk Actuarieel Genootschap (2016, 2018, 2020), the top panels of Figure 12
show the projected period and cohort expected age at death (x + E[Tx]) of a Belgian male in

17This is the GLEX Bel Nl.xlsx-file at https://www.plan.be/databases/data-50-nl-prospectieve+sterft

equotienten+2019+2070.
18We use formulas (11) and (14).
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year males females
0 65 0 65

2020 Best Est. 89.91 20.38 91.54 23.14
[q0.5; q50; q99.5] [88.11;89.89;91.46] [19.57;20.37;21.17] [89.46;91.53;93.25] [22.15;23.14;24.07]
FPB (90.07;90.25) (20.11;20.56) (91.28;91.53) (22.92;23.38)

2040 Best Est. 92.08 22.94 93.15 25.09
[q0.5; q50; q99.5] [90.35;92.08;93.52] [21.65;22.94;24.14] [91.12;93.14;94.82] [23.63;25.09;26.46]
FPB (92.09;92.36) (22.80;23.26) (92.80;93.08) (24.82;25.28)

2060 Best Est. 93.73 25.11 94.45 26.74
[q0.5; q50; q99.5] [92.18;93.72;94.97] [23.69;25.11;26.39] [92.50;94.45;95.97] [25.06;26.74;28.18]
FPB (93.62;93.90) (25.00;25.48) (94.06;94.34) (26.45;26.92)

Table 2: Cohort life expectancy for a 0 and 65 year old, Best Estimate and 0.5% quantile, median and
99.5% quantile obtained from 10 000 simulations, males and females. ‘FPB’ refers to Federaal
Planbureau (2020); the first number is the cohort life expectancy as published in Federaal
Planbureau (2020) (i.e. using ages in completed years) and the second number is the cohort life
expectancy at exact ages, using the transformations proposed in Jaumain and Vandeschrick
(2012).

the year 2020 and 2040. The corresponding results for females are given in the bottom panels of
Figure 12. First of all, the uncertainty in the predicted expected ages at deaths decreases with
higher ages. This is because the higher the age, the less far in the future we have to project
the mortality rates. Second, the projected cohort expected age at death decreases until the age
of about 60 years. The reason is that younger persons benefit more from the lower projected
future mortality rates. Afterwards, the cohort expected age at death again increases due to the
fact that older people already survived up to a certain high age. Third, the period expected age
at death increases over the whole age range. This is in line with our intuitions since we only
use projected mortality rates at one specific year. Last, the confidence bounds capture only the
uncertainty in the future mortality rates and do not look at one particular individual. Hence,
the narrow confidence bounds at high ages do not imply that we can accurately predict the
moment at which one particular individual will die.

3.4 Back testing the mortality model

One of the evaluation criteria used in the process of selecting a mortality model, is the perfor-
mance of a model in back tests (see Cairns et al. (2009)). We illustrate the performance of the
IA|BE 2020 mortality projection model in two types of back tests. In Figure 13 (females) and
14 (males) we calibrate the model on data from 1988 to 2011 and use it to project mortality
rates qx,t with t ∈ {2012, . . . , 2019}.

Figure 15 visualizes the results of three back tests, on calibration periods {1988, . . . , 2000},
{1988, . . . , 2005} and {1988, . . . , 2010}, expressed as fitted values and projections of the period
life expectancy for a 0 year old and a 65 year old. All three back tests perform well for females.
The observed period life expectancies always fall within the fan charts. The back test for males
on the smallest calibration period {1988, . . . , 2000} performs clearly worse than the other back
tests.
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Figure 12: Period (red) and cohort (blue) expected age at death for a Belgian male (top) and female
(bottom) in 2020 (left) and 2040 (right). We plot 0.5% quantile, median and 99.5% quantile
obtained from 10 000 simulations.
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Figure 13: Back test on qx,t, for Belgium, male data, ages 25, 45 (top row) and 65, 85 (bottom row).
We calibrate on 1988-2011 data and then project 2012-2019. We plot 0.5%, median and
99.5% quantile obtained from 10 000 simulations.
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Figure 14: Back test on qx,t, for Belgium, female data, ages 25, 45 (top row) and 65, 85 (bottom row).
We calibrate on 1988-2011 data and then project 2012-2019. We plot 0.5%, median and
99.5% quantile obtained from 10 000 simulations.
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Figure 15: Back tests using calibration periods 1988-2000 (red), 1988-2005 (green) and 1988-2010 (blue),
period life expectancy for a 0 year old (left) and 65 year old (right), male (top) and female
(bottom) data. We plot 0.5%, median and 99.5% quantile obtained from 10 000 simulations.
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4 From IA|BE 2015 to IA|BE 2020: changes and impact assess-
ment

Compared to the IA|BE 2015 model, IA|BE 2020 is calibrated on an updated and slightly
changed data set (as discussed in Section 2.2), while accounting for some methodological
changes. Table 3 quantifies the impact of these various changes in line with Koninklijk Ac-
tuarieel Genootschap (2020). Our starting point in this table is the cohort life expectancy in
2020 as estimated along the principles of IA|BE 2015. However, we rely on the data collected in
2020 and restrict the calibration period to the year 2013 for Belgium and to the year 2009 for
the other European countries. These were the end years of the calibration period used in IA|BE
2015. Therefore, the numbers in the row ‘IA|BE 2015’ in Table 3 are slightly different from the
numbers reported in Antonio et al. (2015)

Cohort LE 2020 males females
0 65 0 65

IA|BE 2015 88.71 19.92 92.85 23.63
Update EU 2013 0.45 0.17 -0.25 -0.13
Shorten Cal. Per. 0.94 0.34 -0.87 -0.19
Joint estimation -0.13 -0.00 -0.01 0.07
Adding intercept 0.46 0.12 0.29 0.03
EU 2013 - BEL 2014 0.06 0.05 0.15 0.17
EU 2014 - BEL 2014 0.50 0.25 0.57 0.28
EU 2014 - BEL 2015 -0.06 -0.08 -0.13 -0.20
EU 2015 - BEL 2015 -0.82 -0.37 -0.89 -0.40
EU 2015 - BEL 2016 0.02 0.02 0.05 0.06
EU 2016 - BEL 2016 0.13 0.07 0.22 0.10
EU 2016 - BEL 2017 -0.02 -0.01 -0.07 -0.08
EU 2017 - BEL 2017 -0.19 -0.09 -0.20 -0.07
EU 2017 - BEL 2018 0.00 0.01 0.03 -0.03
EU 2018 - BEL 2018 -0.32 -0.16 -0.24 -0.09
EU 2018 - BEL 2019 0.16 0.14 0.05 -0.01
IA|BE 2020 89.91 20.38 91.54 23.14

Table 3: Changes in the estimated cohort life expectancies due to the transition from the IA|BE 2015
to the IA|BE 2020 model.

The row ‘Update EU 2013’ in Table 3 refers to the availability of data up to 2013 for all the
14 European countries that are used in the calibration. So, compared to the previous row, we
extend the European mortality data set with the data points corresponding to the years 2010-
2013. ‘Shorten Cal. Per.’ means that we shorten the calibration periods by changing the start
year to 1988. Further, ‘Joint estimation’ refers to the joint modelling of the time series dynamics
for men and women, namely (KM

t , κ
M
t ,K

F
t , κ

F
t ). Thereafter we add the intercept term to the

Belgian period effect κMt and κFt (‘Adding intercept’). Finally, we consecutively extend the
European and Belgian data set with incremental years of data. This stepwise extension of the
data set with a newly observed data point reflects the reality of recalibrating the model on an
update of the data set. More specifically, mortality data for all the European countries for year
t is published on Eurostat and HMD around the beginning of year t+2. In August / September
of year t+ 2 Statbel provides new mortality data for Belgium for year t+ 1.

In conclusion, shortening the calibration period has the greatest impact on the estimated cohort
life expectancy in the year 2020. Another large impact can be observed when adding data for
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Europe for the year 2015. In general the cohort life expectancy for male newborns has increased
with more than one year, when stepping from the IA|BE 2015 to the IA|BE 2020 forecast. In
the case of females, there is a decrease with about 1.3 years.

5 Conclusion

This report describes the methodology used to produce the IA|BE 2020 mortality projection
as well as the stochastic model underneath this best estimate table. The mortality model is of
Li & Lee type and uses Belgian data, together with mortality data from a set of 13 other well
selected European countries, to forecast mortality. Actuaries can use this model to generate
scenarios for future mortality, or they can use the table of qx,t’s as a best estimate scenario of
future mortality. We selected this model from a comparative study of a wide set of stochastic
mortality models published in recent literature. The model performs well in terms of (among
others) robustness, biological reasonableness, transparency, in sample fit and back testing.
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A Data sources

Country 2015 2016 2017 2018 2019 Last mod. HMD Last mod. EURO1 Last mod. EURO2
Austria HMD HMD HMD EURO 3 Sep. 2018 3 July 2020 3 July 2020
Belgium HMD HMD HMD HMD STAT 6 Sep. 2019 - -
Denmark HMD HMD HMD HMD HMD 20 Mars 2020 - -
Finland HMD HMD HMD HMD HMD 10 Sep. 2020 - -
France19 HMD HMD HMD HMD 29 Aug. 2020 - -
Germany (> 1990) HMD HMD HMD EURO 17 Dec. 2018 3 July 2020 3 July 2020
Iceland HMD HMD HMD HMD 2 April 2020 - -
Ireland HMD HMD HMD EURO 1 Oct. 2019 3 July 2020 3 July 2020
Luxembourg HMD HMD HMD EURO 10 Dec. 2019 3 July 2020 3 July 2020
Netherlands HMD HMD HMD HMD 3 April 2020 - -
Norway HMD HMD HMD HMD 21 Nov. 2019 - -
Sweden HMD HMD HMD HMD 9 Jan. 2020 - -
Switzerland HMD HMD HMD HMD 8 May 2020 - -
United Kingdom HMD HMD HMD HMD 11 July 2020 - -
West Ger. (< 1990) 17 Dec. 2018 - -

Table 4: The data sources for each country and for each year. The data source for years before 2015
is HMD. Further, we list the date of last modifications of each of the databases as consulted
when writing this report. EURO1 refers to the databases from Eurostat about the period and
cohort number of deaths, EURO2 refers to the database from Eurostat about the population
sizes at the start of the year. STAT refers to the source Statbel or Statistics Belgium.

B Choice of the calibration period to achieve a stable AR(1)
process

In this appendix we discuss the instability of the AR(1) process, used to model the male Belgian
period effect κMt in Equation (6), when considering the calibration period T̄ = {1970, ..., 2018}
for the common European mortality trend and the calibration period T = {1970, ..., 2019} for
the Belgian deviation of this common trend. Afterwards, we provide a solution by shortening
the calibration period to achieve stability.

First, we visualize the parameter estimates in the calibrated mortality model for male data in
Figure 3 (European parameters: Âx, B̂x and K̂t) and Figure 4 (Belgian parameters: α̂x, β̂x and
κ̂t). Figures 5 and 6 show the same results for females.
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Figure 16: Estimated common parameters, male data, ages 0-90, years 1970-2019: Âx, B̂x and K̂t.

19Whenever data is extracted on Eurostat for France, we exclude deaths that occurred in overseas departments
(Guadeloupe, Martinique, Guyane, La Réunion and Mayotte) to be consistent with the HMD population figures.
Thus, we extract data for Metropolitan France on Eurostat.
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Figure 17: Estimated parameters for Belgium, male data, ages 0-90, years 1970-2019: α̂x, β̂x and κ̂t.
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Figure 18: Estimated common parameters, female data, ages 0-90, years 1970-2019: Âx, B̂x and K̂t.
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Figure 19: Estimated parameters for Belgium, female data, ages 0-90, years 1970-2019: α̂x, β̂x and κ̂t.

Next, we document the parameter estimates in the time series specifications (see Equations
(5) and (6)) in Table 5. The parameter estimate φ̂M in the AR(1) time series model for κ̂Mt
exceeds 1, leading to an unstable process. These values would lead to a divergence of the Belgian
mortality trend from the European mortality trend, a scenario that we consider as implausible.

One possible solution to this problem exists in shortening the original calibration periods
T̄ = {1970, ..., 2018} (European trend) and T = {1970, ..., 2019} (Belgian deviation trend)
in a simultaneous way. Figure 20 depicts the estimates φ̂ for different start years t in both
calibration periods T̄ and T . The plot shows the stability of the female AR(1) process over all
examined calibration periods. The AR(1) process for males becomes stable for the calibration
period with start year 1982. However, the process becomes again unstable for later start years
as the parameter estimate only dips below one locally.
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θ̂(BEL) ĉBEL φ̂(BEL) Ĉ
(BEL)

εMt δMt εFt δFt
Male -0.2205 -0.0055 1.0193 εMt 0.0291 -0.0139 0.0322 0.0044

δMt -0.0139 0.0228 -0.0139 -0.0058
Female -0.2044 -0.0184 0.8849 εFt 0.0322 -0.0139 0.0410 0.0059

δFt 0.0044 -0.0058 0.0059 0.0288

Table 5: Time series parameter estimates using European and Belgian data, male and female data,
ages 0-90, calibration periods T̄ = {1970, ..., 2018} (European mortality trend) and T =
{1970, ..., 2019} (Belgian deviation trend) .
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Figure 20: The parameter estimates φ̂ in the time series of the Belgium-specific period effect κt for
calibration periods T̄ and T with the start year t varying from 1970 to 2000 for the Belgian
males (blue line) and females (red line).

We want the choice for the start year of the calibration periods T̄ and T to be a stable
choice in light of future updates of the model. Figure 21 therefore repeats the experiment from
Figure 20, but we let the end years of both calibration periods vary. E.g., the golden line 15-16

means that we fix the end year of the calibration period T̄ for the European mortality trend to
2015 and the one for the Belgian deviation of this European trend to 2016. In particular, we act
as if we were in the past and are confronted with the same problem as in Figure 20. We observe
an overall stable area for males with start years between 1988 and 1991. In the female case,
no problems occur. Therefore our final selected calibration periods are T̄ = {1988, ..., 2018}
(European mortality trend) and T = {1988, ..., 2019} (Belgian deviation trend).

With the start year of the calibration periods T̄ (European mortality trend) and T (Belgian
deviation trend) fixed to 1988, we now investigate if the calibration period T̄ for the European
mortality trend can possibly be extended, while safeguarding the stability of the AR(1) process.
We show the results in Figure 22 for some variable end years. Each line in this figure shows the
parameter estimate φ̂ in the time series of the male Belgian period effect κ̂t with the start year
in the calibration period for the European mortality trend varying between 1970 and 1988 and
with some specific end years, indicated by the legend labels. The start year of the calibration
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Figure 21: The parameter estimates φ̂ in the time series of the estimated Belgian period effect κ̂t for
calibration periods T̄ and T with the start year t varying from 1970 to 2000 and with varying
end years, for the Belgian males.

period for the Belgian deviation stays fixed at the year 1988. We can not find a stable region as
was the case in Figure 21. Therefore, we continue with the earlier selected calibration periods
T̄ = {1988, ..., 2018} (European mortality trend) and T = {1988, ..., 2019} (Belgian deviation).
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Figure 22: The parameter estimates φ̂ in the time series of the estimated Belgian period effect κ̂t for
calibration periods T̄ and T with the start year t in T̄ (European trend) varying from 1970
to 2000 and with varying end years, for the Belgian males. Note that we fix the start year
of the calibration period T to 1988.
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C AR(k)-process for Belgian period effect κt

C.1 Description, calibration and projection

We also investigate the effect of an increase of the order of the autoregressive time series process
for the male Belgian deviation κMt from the European mortality trend. This strategy has the
advantage that we do not intervene in the start year of the calibration period. We simply
increase the lag-order of the AR(k) process until we reach a stable process.

First, we calibrate the mortality model on ages 0-90 and calibration periods 1970-2018 (European
trend) and 1970-2019 (Belgium deviation) for males and females separately, using the approach
explained in Section 2.4. This results in estimated parameters of the LL mortality model, namely
Âx, B̂x, K̂t, α̂x, β̂x and κ̂t, for each gender.

Stability of an AR(k) process. An autoregressive process of lag-order k, in short an AR(k)
process, is written as

κt = a1κt−1 + a2κt−2 + . . .+ akκt−k + δt,

for t > k. This process is stable whenever the roots of its characteristic polynomial

φ(x) = 1− a1x− a2x2 − . . .− akxk

all lie outside the unit circle. Whenever one root is less than 1 in absolute value, κt diverges as
time moves on. Eventually, this would lead to unstable mortality projections, i.e. divergence
from the European mortality trend.

Section 2.5 already reveals that an AR(1) process will not be sufficient to model the estimated
male Belgian period effect κ̂Mt . Therefore, we increase the lag order until we get a stable process
for κ̂Mt . Since we do not observe stability issues for the AR(1) process to model the female
Belgian period effect κ̂Ft , we keep its lag order at one. Finally, we retrieve the following time
series dynamics

κ̂Mt = 0.0027 + 0.9712κ̂Mt−1 − 0.0255κ̂Mt−2 + 0.3916κ̂Mt−3 − 0.0711κ̂Mt−4 − 0.2951κ̂Mt−5 + δMt ,

κ̂Ft = −0.0184 + 0.8834κ̂Ft−1 + δFt .

Figure 23 indicates that the roots of the corresponding characteristic polynomials all lie outside
the unit circle. We plot the inverse roots for visualization purposes. Hence, both processes are
stable.

Generating future scenarios of mortality. Next, we can project the time-dependent pa-
rameters KM

t , κMt , KF
t and κFt in a similar way as explained in Section 2.5. However, we now

project from an AR(5) instead of an AR(1) process for males, as described and estimated in the
previous paragraph. We again generate 10 000 scenarios and show the corresponding fan charts
in Figure 24. We make a comparison with the earlier discussed projection for the model that
uses AR(1) processes for both κMt and κFt and was calibrated on the shorter period starting
in the year 1988 (see Figure 8). For the males, we observe a higher uncertainty, i.e. wider fan
chart, for the model that uses the longer calibration period, starting from 1970 on.
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Figure 23: The inverse roots of the characteristic polynomials of the AR(k) processes for κ̂Mt and κ̂Ft .
Based on the mortality model, calibrated on ages 0-90 and years 1970-2019.
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Figure 24: Projection of time dependent parameters: Kt and κt, male (left) and female (right) data.
We plot 0.5% quantile, median and 99.5% quantile obtained from 10 000 simulations. We
add the projection results of Figure 8 in blue. The legend label AR(5)-1970 refers to the
mortality model, calibrated on ages 0-90 and years 1970-2018 (European trend) and 1970-
2019 (Belgian deviation), and that uses an AR(5) to attain stability for the time series
of κMt and an AR(1) process for κFt . The legend label AR(1)-1988 refers to the mortality
model, calibrated on ages 0-90 and years 1988-2018 (European trend) and 1988-2019 (Belgian
deviation), and that uses an AR(1) processes for both κMt and κFt (Sections 2 and 3).
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C.2 Fitted and simulated mortality rates

We repeat the procedure explained in Section 3.1 and construct fitted and simulated mortality
rates with the AR(5) and AR(1) model for the male and female Belgian deviation respectively.
Figures 25 (males) and 26 (females) show the fitted and projected mortality rates. The fan
charts are based on 10 000 simulations. On top of that, we add the mortality rate projections
of the earlier discussed mortality model in blue, i.e. the mortality model that uses a calibration
period 1988-2019 and an AR(1) process to model κt. Apart from the plot showing the projection
of a 25-year old male, we do not observe many differences.
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Figure 25: Estimated and projected mortality rates, qx,t, for Belgium, male data, ages 25, 45 (top row)
and 65, 85 (bottom row). We plot 0.5% quantile, median and 99.5% quantile obtained from
10 000 simulations. We add the mortality rate projections of Figure 9 in blue.

C.3 Life expectancy: period and cohort

The top panels of Figure 27 show the observed period life expectancy (black dots) for a 0 (left)
and 65 (right) year old male, the calibrated period life expectancy (red line) and the simulations
of e0(t) and e65(t) for t = 2020, . . . , 2070, as obtained with the AR(5) model for κMt . The blue
fan chart shows the cohort life expectancy, ecoh0 (t) and ecoh65 (t). The corresponding results for
females are in the bottom panels of Figure 27. We add in purple the period and cohort life
expectancies resulting from the mortality model with the shorter calibration period starting in
the year 1988 (see Figure 11).

Table 6 lists the median and 99% confidence intervals of ecohx (t) for some specific choices of x
and t. We add the results of Table 2 to make a comparison between the two approaches. The
mortality model that uses the AR(5) time series to model κMt and the AR(1) model for κFt (longer
calibration period) underestimates the cohort life expectancies compared to the mortality model
that uses the AR(1) time series model to model both κMt and κFt (shorter calibration period),
in the case of males. In the case of females, we have an overestimation.
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Figure 26: Estimated and projected mortality rates, qx,t, for Belgium, female data, ages 25, 45 (top
row) and 65, 85 (bottom row). We plot 0.5% quantile, median and 99.5% quantile obtained
from 10 000 simulations. We add the mortality rate projections of Figure 10 in blue.

year males females
0 65 0 65

2020 [q0.5; q50; q99.5]AR(5) [86.91;88.81;90.43] [18.98;19.91;20.83] [90.18;92.14;93.78] [22.30;23.33;24.33]
[q0.5; q50; q99.5]AR(1) [88.11;89.89;91.46] [19.57;20.37;21.17] [89.46;91.53;93.25] [22.15;23.14;24.07]
FPB (90.07;90.25) (20.11;20.56) (91.28;91.53) (22.92;23.38)

2040 [q0.5; q50; q99.5]AR(5) [89.15;90.93;92.46] [20.85;22.21;23.49] [91.93;93.83;95.41] [23.77;25.30;26.67]
[q0.5; q50; q99.5]AR(1) [90.35;92.08;93.52] [21.65;22.94;24.14] [91.12;93.14;94.82] [23.63;25.09;26.46]
FPB (92.09;92.36) (22.79;23.26) (92.80;93.08) (24.82;25.28)

2060 [q0.5; q50; q99.5]AR(5) [90.97;92.56;93.95] [22.70;24.21;25.58] [93.44;95.16;96.60] [25.32;27.02;28.47]
[q0.5; q50; q99.5]AR(1) [92.18;93.72;94.97] [23.69;25.11;26.39] [92.50;94.45;95.97] [25.06;26.74;28.18]
FPB (93.62;93.90) (25.00;25.48) (94.06;94.34) (26.45;26.92)

Table 6: Cohort life expectancy for a 0 and 65 year old, 0.5% quantile, median and 99.5% quantile
obtained from 10 000 simulations, males and females. ‘FPB’ refers to Federaal Planbureau
(2020); the first number is the cohort life expectancy as published in Federaal Planbureau
(2020) (i.e. using ages in completed years) and the second number is the cohort life expectancy
at exact ages, using Jaumain and Vandeschrick (2012). The subscript AR(5) refers to the
mortality model discussed in this section, the subscript AR(1) refers to the mortality model
with calibration period 1988-2019 and where we used an AR(1) process to model both κMt and
κFt .

D Bootstrapping

In line with Koninklijk Actuarieel Genootschap (2018), we now investigate the uncertainty of
the parameter estimates Âx, B̂x, K̂t, α̂x, β̂x and κ̂t in the LL model on the one hand and the
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Figure 27: Period (black dots and red lines) and cohort (blue) life expectancy for a 0 year old (left) and
65 year old (right), male (top) and female (bottom) data. We plot 0.5% quantile, median
and 99.5% quantile obtained from 10 000 simulations. We add the results of Figure 11 in
purple.

parameters used in the time series dynamics on the other hand. We cannot analytically derive
the prediction intervals of these parameter estimates. Therefore, we rely on bootstrapping to
assess the parameter uncertainty.

We again model the Belgian period effect κt using an AR(1) process instead of the more complex
AR(5) process, covered in Appendix C. We use the calibration periods 1988-2018 (European
trend) and 1988-2019 (Belgian deviation) in our experiments. Our goal is to investigate the
uncertainty of the parameter estimates. However, the choice of the calibration periods does
not ensure stability for the time series of the estimated Belgian period effect κ̂t in each of the
bootstrapped data sets.

We will asses the uncertainty using the Poisson bootstrap approach, as discussed in Pitacco
et al. (2009). We adjust their proposed strategy since we work with the LL model, combining a
mortality model for the European trend with a model for the Belgian deviation from this trend.

1. We start with the observations (EBEL
x,t , dBEL

x,t ), representing the exposures and number of

deaths in Belgium at ages x and times t. Then, we take B bootstrap samples (EBEL
x,t , dBEL,b

x,t )

for b = 1, 2, . . . , B. The bootstrapped number of deaths dBEL,b
x,t are realizations of the Pois-

son distribution with mean EBEL
x,t µ̂BEL

x,t = d̂BEL
x,t , where the µ̂BEL

x,t ’s are the fitted mortality
rates for Belgium and are calculated using Equations (2), (3) and (4) based on the cali-
brated mortality model. In other words, we add different Poisson noises to the calibrated
number of deaths d̂BEL

x,t to end up with the bootstrapped number of deaths dBEL,b
x,t .

2. Besides the Belgian exposures and number of deaths, we also work with West-European
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data (EEU
x,t , d

EU
x,t ) to model the European mortality trend. We again take B bootstrap

samples (EEUx,t , d
EU,b
x,t ), where now the bootstrapped number of deaths of the European

countries dEU,bx,t are drawn from a Poisson distribution with mean EEU
x,t µ̂

EU
x,t = d̂EUx,t . We

hereby calculate the fitted mortality rates of European µ̂EUx,t ’s using Equation (3), based

on the estimated Âx, B̂x and K̂t.

To conclude, we have B bootstrap samples of the Belgian and total West-European data, namely
(EBEL

x,t , dBEL,b
x,t ) and (EEU

x,t , d
EU,b
x,t ) for b = 1, 2, . . . , B. For each b, we then repeat the calibration

process documented in Section 2.4. This then leads to B parameter estimates of the common
trend, Âbx, B̂

b
x and K̂b

t , and for the Belgian deviation of this trend, α̂bx, β̂
b
x and κ̂bt .

Figure 28 shows the 99% bootstrap confidence intervals of the estimates of the European pa-
rameters, namely Âbx, B̂

b
x and K̂b

t for females, calculated on each bootstrap sample. Figure 29
shows the results for the estimated Belgian female parameters α̂bx, β̂

b
x and κ̂bt . We use B = 10 000

bootstrap samples. Figure 30 and 31 show the corresponding figures for males.
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Figure 28: Estimated common parameters, female data, ages 0-90, years 1988-2018: Âb
x, B̂b

x and K̂b
t

for each bootstrap sample b = 1, 2, . . . , B. We add the 99% bootstrap confidence intervals
in red. The black line represents the medium quantile.

0 20 40 60 80

−
0.

2
0.

0
0.

1
0.

2
0.

3

BEL Female :  αx
(BEL)

Age

a.
x

0 20 40 60 80

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

BEL Female :  βx
(BEL)

Age

b.
x

1990 1995 2000 2005 2010 2015 2020

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

BEL Female :  κt
(BEL)

Age

k.
t

Figure 29: Estimated parameters for Belgium, female data, ages 0-90, years 1988-2019: α̂b
x, β̂b

x and κ̂bt
for each bootstrap sample b = 1, 2, . . . , B. We add the 99% bootstrap confidence intervals
in red. The black line represents the medium quantile.

In addition, Figure 32 shows the 99% bootstrap confidence intervals of the estimated male,
Belgian mortality rates q̂bx,t for ages 25, 45, 65 and 85. These mortality rates are calculated as
follows:

µ̂BEL,b
x,t = exp

(
Âbx + α̂bx + B̂b

xK̂
b
t + β̂bxκ̂

b
t

)
q̂BEL,b
x,t = 1− exp

(
−µ̂BEL,b

x,t

)
,
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Figure 30: Estimated common parameters, male data, ages 0-90, years 1988-2018: Âb
x, B̂b

x and K̂b
t for

each bootstrap sample b = 1, 2, . . . , B. We add the 99% bootstrap confidence intervals in
red. The black line represents the medium quantile.
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Figure 31: Estimated parameters for Belgium, male data, ages 0-90, years 1988-2019: α̂b
x, β̂b

x and κ̂bt
for each bootstrap sample b = 1, 2, . . . , B. We add the 99% bootstrap confidence intervals
in red. The black line represents the medium quantile.

for x ∈ {25, 45, 65, 85}, t ∈ {1988, 1989, . . . , 2019}, and b ∈ {1, 2, ..., 10 000}. The black
line shows the estimated Belgian mortality rates of the original LL fit, on the original (non-
bootstrapped) data set. The black dots are the observed mortality rates. Figure 33 shows the
same results for females.

Next, we can repeat the projection procedure, covered in Section 2.5, for each bootstrap sample.
We choose an AR(1) process to model the Belgian period effect κ̂bt . More specifically, we again
follow the time dynamics in Equations (5) and (6) and use the 10 000 bootstrap samples for the
time dependent parameters. Figure 34 shows the histogram of the bootstrap estimates of the
drift parameter in the random walk process to model the European period effect K̂M

t and K̂F
t .

Further, a stable mortality model requires that the estimated AR-paremeter is smaller than 1 in
absolute value. The bottom panels in Figure 35 show histograms of the bootstrap estimates of
the AR-parameter for both males and females. Figure 35 shows the histograms of the intercepts
in the AR(1) process for κ̂Mt and κ̂Ft at the top panels. Lastly, histograms of the parameter
estimates in the covariance matrix Ĉ as a result of the bootstrapping are given in Figure 36.
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Figure 32: Fitted mortality rates q̂x,t, for Belgium, male data, ages 25, 45 (top row) and 65, 85 (bottom
row), calibration period 1988−2019. We add the 99% bootstrap confidence intervals for q̂x,t
in red. The black line represents the fitted mortality rates, based on the original LL fit (on
the original data set).
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Figure 33: Fitted mortality rates q̂x,t, for Belgium, female data, ages 25, 45 (top row) and 65, 85 (bottom
row), calibration period 1988−2019. We add the 99% bootstrap confidence intervals for q̂x,t
in red. The black line represents the fitted mortality rates, based on the original LL fit (on
the original data set).
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Figure 34: Histogram of the bootstrapped estimates of the drift parameter in the random walk process
to model the European period effect K̂M

t for males (left) and K̂F
t for females (right). The

vertical, green, solid line shows the original estimate of the drift parameter (see Table 1).
The mortality model is calibrated on male and female data for years 1988-2018 (European
trend) and 1988-2019 (Belgian deviation), and ages 0-90.
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Figure 35: Histogram of the bootstrapped estimates of the intercept (top) and the AR(1) parameter
(bottom) in the time series process to model the Belgian period effect κ̂t for males (left)
and females (right). The vertical, red, solid line shows the original parameter estimates (see
Table 1). The mortality model is calibrated on male and female data for years 1988-2018
(European trend) and 1988-2019 (Belgian deviation), and ages 0-90.

33



0.026 0.028 0.030 0.032 0.034

0
50

0
10

00

−0.01 0.00 0.01 0.02
0

50
0

10
00

0.032 0.034 0.036 0.038 0.040

0
50

0
15

00

−0.01 0.00 0.01 0.02 0.03

0
10

00
30

00

0.02 0.03 0.04 0.05 0.06 0.07 0.08

0
50

0
15

00

−0.03 −0.02 −0.01 0.00 0.01 0.02

0
10

00
25

00

−0.04 −0.02 0.00 0.02

0
50

0
15

00

0.040 0.044 0.048 0.052

0
50

0
15

00
25

00

−0.02 0.00 0.01 0.02 0.03 0.04

0
10

00
20

00
30

00

0.02 0.06 0.10 0.14

0
10

00
20

00
Figure 36: Histograms of the parameter estimates in the covariance matrix Ĉ for the error terms(

εMt , δ
M
t , εFt , δ

F
t

)
in the multivariate time series processes we used for (K̂M

t , κ̂Mt , K̂
F
t , κ̂

F
t ).

The vertical, red, solid line shows the original parameter estimates (see Table 1). Mortal-
ity model is calibrated on male and female data for years 1988-2018 (European trend) and
1988-2019 (Belgian deviation), and ages 0-90.
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