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Introduction

Course
 https://github.com/katrienantonio/hands-on-machine-learning-Python-module-3

The course repo on GitHub, where you can find the data sets, lecture sheets, Google Colab links and Python notebooks.

Us
 https://katrienantonio.github.io/ & LinkedIn profile Jonas & LinkedIn profile Roel

 katrien.antonio@kuleuven.be & jonas.crevecoeur@kuleuven.be & roel.henckaerts@kuleuven.be

 (Katrien) Professor in insurance data science

 (Jonas) PhD in insurance data science, now data science consultant at UHasselt and KULeuven

 (Roel) PhD in insurance data science, now senior data analyst at Prophecy Labs
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Why this course?

The goals of this module 

de-mystify neural networks

develop foundations of working with (different types of) neural networks

focus on the use of neural networks for the analysis of claim frequency + severity data, also in combination with
GLMs or tree-based ML models

discuss how to evaluate and interpret neural networks

step from simple networks (for regression) to auto encoders and convolutional networks.
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This presentation is based on

Michael A. Nielsen (2015) Neural networks and deep
learning

the work of prof. Taylor Arnold, in particular Chapter 8
in the book A computational approach to statistical
learning by Arnold, Kane & Lewis (2019)

Boehmke (2020) on Deep Learning with R: using Keras
with TensorFlow backend.

Actuarial modelling with neural nets is covered in

Wüthrich & Buser (2020) Data analytics for non-life
insurance pricing, in particular Chapter 5

Wüthrich (2019) From Generalized Linear Models to
neural networks, and back

Wüthrich & Merz (2019) Editorial: Yes, we CANN!, in
ASTIN Bulletin 49/1.

Denuit, Hainaut & Trufin (2019) Effective Statistical
Learning Methods for Actuaries: Neural Networks and
Extensions, Springer Actuarial Lecture Notes

A series of (working) papers covering the use of neural
nets in insurance pricing (classic, and with telematics
collected data), mortality forecasting, reserving, ...

Want to read more?
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Getting started

Unpacking our toolbox
Tensors

De-mystifying neural networks

What's in a name?
A simple neural network

Neural network architecture

An architecture with layers in {keras}

Network compilation

Loss function and forward pass
Gradient descent and backpropagation
Performance metrics
Model evaluation

Regression with neural networks

Redefining GLMs as a neural network
Including exposure
Case study

Convolutional neural networks

Handling new data formats
Convolutional layers explained
Evaluation and intepretation

Auto encoders

Data compression and feature extraction
Evaluation

Module 3's Outline
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Some roadmaps to explore the ML landscape...

Source: Machine Learning for Everyone In simple words. With real-world examples. Yes, again.
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Getting started
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What's the excitement about?

 Neural networks are an exciting topic to explore, because:

They are a biologically-inspired programming paradigm that enables a computer to learn from data.

Deep learning is a powerful set of techniques for learning in neural networks.

Neural networks and deep learning provide best-in-class solutions to many problems in image recognition, speech
recognition and natural language processing.

The universal approximation theorem (Hornik et al., 1989; Cybenko, 1989) states that neural networks with a single
hidden layer can be used to approximate any continuous function to any desired precision.
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The programming framework for today

Python:
Our chosen programming language.

Keras:
An inuitive high level module interface to TensorFlow.

TensorFlow:
Open source platform for machine learning developed by the Google Brain Team, see https://www.tensorflow.org/.
Special focus on training deep neural networks.

This is the most popular framework for training neural networks today. An alternative is Pytorch  (developed by Facebook)
which is mainly used in research.
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Python libraries
Today's session will make extensive use of {keras}, {numpy} and {tensorflow}.
Do not forget to import these libraries in your Python session.

import keras
import tensorflow as tf
import numpy as np
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Why is this thing called TensorFlow?
A scalar is a single number, or a 0D tensor, i.e. zero dimensional:

age_car = 5 ,    fuel = gasoline ,    bm = 10

In tensor parlance a scalar has 0 axes.

In a big data world with structured and unstructured data, our input can be a

a single time series: 1-dimensional, with 1 axis

one sound fragment: 2-dimensional, with 2 axes

one image in color: 3-dimensional, with 3 axes

one movie: 4-dimensional, with 4 axes

...

We require a framework that can flexibly adjust to all these data structures!
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Why is this thing called TensorFlow? (cont.)
TensorFlow is this flexible framework which consists of highly optimized functions based on tensors.

What is a tensor?

A 1-dimensional tensor is a vector (e.g. closing daily stock price during 250 days)

A 2-dimensional tensor is a matrix (e.g. a tabular data set with observations and features)

...

Tensors generalize vectors and matrices to an arbitrary number of dimensions.

Many matrix operations, such as the matrix product, can be generalized to tensors.

Luckily Keras provides a high level interface to TensorFlow, such that we will have only minimal exposure to tensors and the
complicated math behind them. 13 / 107



Let's picture a stock price dataset where

each minute we record the current price, lowest price
and highest price
a trading day has 390 minutes and a trading year has
250 days.

Then, one year of data can then be stored in a 3D tensor
(samples, timesteps, features) , here: (250, 390, 3) .

Source: Bradley Boehmke

Example of a 3D tensor
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Let's picture an image data set where

each image has a specific height and width
three color channels (Red, Green, Blue) are registered
multiple images ( samples ) are stored.

Then, a collection of images can be stored in a 4D tensor
(samples, height, width, channels) .

Source: Bradley Boehmke

Example of a 4D tensor

15 / 107

https://github.com/rstudio-conf-2020/dl-keras-tf


Let's picture a video data set where

each video sample is one minute long and has a
number of frames per second (e.g. 4 frames per
second)
each frame has a specific height (e.g. 256 pixels) and
width (e.g. 144 pixels)
three color channels (Red, Green, Blue)
multiple images ( samples ) are stored.

Then, a collection of images can be stored in a 4D tensor
(samples, frames, height, width, channels)  which
becomes here (samples, 240, 256, 144, 3) .

Source: Bradley Boehmke

Example of a 5D tensor
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Tensorflow  generalizes many mathematical operations
from numpy  for inputs of type tensor.

See the Tensorflow documentation for a list of all tensor
functions.

tf.constant : create and initialise a tensor.

x = tf.constant(
  [1,2,3,4,5,6], 
  shape = [3,2], 
  dtype=tf.float32); 
x
## <tf.Tensor: shape=(3, 2), dtype=float32, numpy=
## array([[1., 2.],
##        [3., 4.],
##        [5., 6.]], dtype=float32)>

Similar to numpy  functions, most tensor operations require
an axis parameter to specify the dimensions over which
the function should be performed.

tf.math.reduce_mean : calculate the mean of the
tensor.

tf.math.reduce_mean(x, axis = 0)
## <tf.Tensor: shape=(2,), dtype=float32, numpy=array([

Created tensors are compatible with numpy  functions

np.mean(x, axis = 0)
## array([3., 4.], dtype=float32)

Tensor functions
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

Your turn
In this warming up exercise you create a tensor and apply basic tensor functions.

Q.1: create a 3-dimensional tensor in Python with values 1, 2, ..., 12  and shape (2, 3,
2) .

Q.2: calculate the logarithm of this tensor.

Q.3: calculate the mean of this tensor over the third axis.
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Data sets used in the course
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Data sets used in this course - MTPL
We will (once again) use the Motor Third Party Liability data set. There are 163,231 policyholders in this data set.

The frequency of claiming ( nclaims ) and corresponding severity ( avg , the amount paid on average per claim reported by a
policyholder) are the target variables in this data set.

Predictor variables are:

the exposure-to-risk, the duration of the insurance coverage (max. 1 year)
factor variables, e.g. gender, coverage, fuel
continuous, numeric variables, e.g. age of the policyholder, age of the car
spatial information: postal code (in Belgium) of the municipality where the policyholder resides.

More details in Henckaerts et al. (2018, Scandinavian Actuarial Journal) and Henckaerts et al. (2019, arxiv).
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MNIST
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Large database of 70,000 labeled images of
handwritten digits, see
http://yann.lecun.com/exdb/mnist/

Images are preprocessed, i.e. scaled and centered.

Classic test case for machine learning classification
algorithms. Current models achieve an accuracy of
more than 99.5%.

Data sets used in this course - MNIST
As discussed, not all data are in tabular format.

We analyze an image database from the Modified National Institute of Standards and Technology, short MNIST.

Working with MNIST will learn us how machine learning methods can be used to work with new data sources, such as images.
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The images are in grayscale. Each image is stored as a
28x28 intensity matrix, with intensity expressed on a scale
from 0-255.

Recognizing that the images below all represent the digit 8
is trivial for humans, but difficult for computers.

Neural networks are ideal for situations where the relation
between the input (here: intensity matrix) and the output
(here: 0-9) is complicated.

Data sets used in this course - MNIST

23 / 107



De-mystifying neural networks
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Different types of neural networks and their applications:

ANN: Artificial Neural Network
for regression and classification problems, with vectors
as input data

CNN: Convolutional Neural Network
for image processing, image/face/... recognition, with
images as input data

RNN: Recurrent Neural Network
for sequential data such as text or time series

... and many more!

What's in a name?
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De-mystify artificial neural networks (ANNs):

a collection of inter-woven linear models
extending linear approaches to detect non-linear
interactions in high-dimensional data.

See the picture on the right.

Goal: predict a scalar response  from scalar input .
Some terminology:

 is the input layer
 is the output layer

middle layer is a hidden layer
four neurons: , ,  and .

A simple neural network

y x

x

v

x z1 z2 v

26 / 107



First, we apply two independent linear models:

using four parameters: two intercepts and two slopes.

Next, we construct another linear model with the  as
inputs:

Putting it all together:

Model is over-parametrized, with infinitely many ways to
describe the same model.

Essentially, still a linear model!

A simple neural network (cont.)

z1 = b1 + x ⋅ w1

z2 = b2 + x ⋅ w2

zj

ŷ := v = b3 + z1 ⋅ u1 + z2 ⋅ u2.

v = b3 + z1 ⋅ u1 + z2 ⋅ u2

= b3 + (b1 + x ⋅ w1) ⋅ u1 + (b2 + x ⋅ w2) ⋅ u2

= (b3 + u1 ⋅ b1 + u2 ⋅ b2) + (w1 ⋅ u1 + w2 ⋅ u2) ⋅ x

= (intercept) + (slope) ⋅ x.
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We capture non-linear relationships between  and  by
replacing

with

where  is an activation function, a mapping from
 to .

Adding an activation function greatly increases the set of
possible relations between  and !

For example, the rectified linear unit (ReLU) activation
function:

Many more activation functions: sigmoid, softmax, identity,
etc. (see further).

A simple neural network (cont.)

x v

v = b3 + z1 ⋅ u1 + z2 ⋅ u2.

v = b3 + σ(z1) ⋅ u1 + σ(z2) ⋅ u2

= b3 + σ(b1 + x ⋅ w1) ⋅ u1 + σ(b2 + x ⋅ w2) ⋅ u2,

σ(. )

R R

x v

ReLU(x) = { x, if x ≥ 0

0, otherwise.
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Examples of activation functions

Source: https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-deep-learning
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Artificial Neural networks (ANNs):

a collection of neurons
organized into an ordered set of layers
directed connections pass signals between neurons in
adjacent layers
to train:
update parameters describing the connections by
minimizing loss function over training data
to predict:
pass  to first layer, output of final layer is .

The network is dense or densely connected if each
neuron in a layer receives an input from all the neurons
present in the previous layer.

This is a feedforward neural network - no loops!

From the simple neural network to ANNs

xi ŷ i
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Using the neural nets terminology or language:

intercept called the bias

slopes called weights

 layers in total, with input layer denoted as layer
0 and output layer as 

use  (from activation) to denote the output of a
given neuron in a given layer

technically, deep learning refers to any neural
network that has 2 or more hidden layers.

A single layer ANN, also called perceptron or artificial
neuron.

The neural nets' terminology

L + 1

L

a
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Neural network architecture in Keras
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This sequential layer structure is really at the core of the
Keras library.

model = keras.models.Sequential([
  keras.layers.Dense(...),
  keras.layers.Dense(...)
])

An architecture with layers
In a neural network, input travels through a sequence of layers, and gets transformed into the output.

Layers consist of nodes and the connections between these nodes and the previous layer.

layer_dense()  is creating a fully connected feed forward neural network.

33 / 107



model = keras.models.Sequential([ 
  keras.layers.Dense(...), # hidden layer
  keras.layers.Dense(...) # output layer
])

Each layer_dense()  represents a hidden layer or the final
output layer.

model = keras.models.Sequential([ 
  keras.layers.Dense(...), # hidden layer 1
  keras.layers.Dense(...), # hidden layer 2
  keras.layers.Dense(...), # hidden layer 3
  keras.layers.Dense(...) # output layer
])

We can add multiple hidden layers by adding more
layer_dense()  functions.

Technically, deep learning refers to any neural
network that has 2 or more hidden layers.

The last layer_dense()  will always represent the
output layer.

An architecture with layers (cont.)
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units = 512 : number of nodes in the given layer

input_shape = [784]

tells the first hidden layer how many input
features there are
only required for the first layer_dense

activation = 'relu' : this hidden layer uses the ReLU
activation function.

Here: the MNIST pictures (28x28) are flattened to a an input
vector of length 784.

A hidden layer
model = keras.models.Sequential([ 
  keras.layers.Dense(units = 512, activation='relu', input_shape = [784]), # hidden layer
])
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A hidden layer - some intuition
Nodes in the hidden layer(s) represent intermediary features that we do not explicitely define.

We let the model decide the optimal features.

For example, recognizing a digit is more difficult than recognizing a horizontal or vertical line.

Hidden layers automatically split the problem into smaller problems that are easier to model.
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Two primary arguments of concern for the final output
layer:

1. number of units
regression: units = 1 :

Output layer
model = keras.models.Sequential([ 
  keras.layers.Dense(units = 512, activation='relu', input_shape = [784]), 
  keras.layers.Dense(units = 10, activation='softmax')
])

The choice of the units  and activation  function in the output layer depend on the type of prediction!
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Two primary arguments of concern for the final output
layer:

1. number of units
regression: units = 1
binary classification: units = 1

Output layer
model = keras.models.Sequential([ 
  keras.layers.Dense(units = 512, activation='relu', input_shape = [784]), 
  keras.layers.Dense(units = 10, activation='softmax')
])

The choice of the units  and activation  function in the output layer depend on the type of prediction!
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Two primary arguments of concern for the final output
layer:

1. number of units
regression: units = 1
binary classification: units = 1
multi-class classification: units = n

Output layer
model = keras.models.Sequential([ 
  keras.layers.Dense(units = 512, activation='relu', input_shape = [784]), 
  keras.layers.Dense(units = 10, activation='softmax')
])

The choice of the units  and activation  function in the output layer depend on the type of prediction!
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Two primary arguments of concern for the final output
layer:

1. number of units
2. activation function

regression: activation = NULL  (identity function)

Output layer
model = keras.models.Sequential([ 
  keras.layers.Dense(units = 512, activation='relu', input_shape = [784]), 
  keras.layers.Dense(units = 10, activation='softmax')
])

The choice of the units  and activation  function in the output layer depend on the type of prediction!
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Two primary arguments of concern for the final output
layer:

1. number of units
2. activation function

regression: activation = NULL  (identity function)
binary classification: activation = 'sigmoid'

Output layer
model = keras.models.Sequential([ 
  keras.layers.Dense(units = 512, activation='relu', input_shape = [784]), 
  keras.layers.Dense(units = 10, activation='softmax')
])

The choice of the units  and activation  function in the output layer depend on the type of prediction!

f(y) = 1
1+e−y
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Two primary arguments of concern for the final output
layer:

1. number of units
2. activation function

regression: activation = NULL  (identity function)
binary classification: activation = 'sigmoid'
multi-class classification: activation = 'softmax'

Output layer
model = keras.models.Sequential([ 
  keras.layers.Dense(units = 512, activation='relu', input_shape = [784]), 
  keras.layers.Dense(units = 10, activation='softmax')
])

The choice of the units  and activation  function in the output layer depend on the type of prediction!
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

Your turn
Ultimately, here is a summary of the network architecture discussed so far for the MNIST data

model = keras.models.Sequential([
  keras.layers.Dense(units = 512, 
                     activation='relu', 
                     input_shape = [784]),
  keras.layers.Dense(units = 10, 
                     activation = 'softmax')
])

Can you figure out how many parameters will be trained for this network?
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## Model: "sequential"
## ____________________________________________________
## Layer (type)                        Output Shape    
## ====================================================
## dense_1 (Dense)                     (None, 512)     
## ____________________________________________________
## dense (Dense)                       (None, 10)      
## ====================================================
## Total params: 407,050
## Trainable params: 407,050
## Non-trainable params: 0
## ____________________________________________________

The model has 407,050 parameters:

784 inputs (28x28 pixels in a single image)

1 hidden layer, with

512 nodes and ReLU activation
thus, (784 x 512) + 512 = 401,920 parameters

multi-class output layer, with

10 nodes
softmax activation function
thus, (512 x 10) + 10 = 5,130 parameters

all together, that makes 407,050 parameters!
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Network compilation
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Initialize weights (randomly).

The forward pass then results in predicted values , to
be compared with .

The difference is measured with a loss function, the
quantity that will be minimized during training.

Keras includes many common loss functions:

"mse" : Gaussian
"poisson" : Poisson
"binary_crossentropy" : binary classification
"categorical_crossentropy" : multi-class classification
many others, see the Keras documentation

Pick a loss function that aligns best to the problem at
hand!

Loss function and forward pass

ŷ

y

46 / 107

https://keras.io/losses/


model = model.compile(
    loss = 'categorical_crossentropy',
    optimizer = keras.optimizers.RMSprop(), 
    metrics = ['accuracy']
  )

With loss = "categorical_crossentropy"  the loss of a
single training observation is

where  runs over the classes in the multi-class prediction
problem,  is the fitted probability of class  and  is
a 0/1 hot-encoding of the truly observed class.

For instance, when the true input digit is 1 the vector  is
.

You can also define your own loss function in Keras, e.g.

def mse(y_pred, y_true):
    return tf.math.reduce_mean((y_pred - y_true)**2)

model = model.compile(
    loss = mse,
    optimizer = keras.optimizers.RMSprop(), 
    metrics = ['accuracy']
  )

tf.math.reduce_mean  is the tensorflow
implementation of mean  that takes a tensor as input.

Compiling the model

9

∑
j=0

−yj ⋅ log (f(sj)),

j

f(sj) j yj

y

(0, 1, 0, 0, … , 0)
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model = model.compile(
    loss = 'categorical_crossentropy',
    optimizer = keras.optimizers.RMSprop(),
    metrics = ['accuracy']
  )

Keras includes several optimizers for minimizing the loss
function.

Popular choices are:

optimizer_rmsprop()

optimizer_adam()

other optimizers, see the Keras documentation

The goal is to find weights and bias terms that minimize
the loss function.

Compiling the model (cont.)
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In general terms, we want to find (with  for all unknown
parameters)

With gradient descent: we'll move in the direction the
loss locally decreases the fastest!

Thus,

with learning rate .

With a loss function evaluated over  training data points
(cfr. supra on epochs and minibatches)

Gradient descent and backpropagation

w

min
w

L(w),

wnew = wold − η ⋅ ∇wL(wold),

η

n

∇wL(w) =
n

∑
i=1

∇wLi

1

n
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In general terms, we want to find (with  for all unknown
parameters)

With gradient descent: we'll move in the direction the loss
locally decreases the fastest!

Thus,

with learning rate .

With a loss function evaluated over  training data points
(cfr. supra on epochs and minibatches)

.

Computing the gradient of the loss function wrt all
trainable parameters:

tons of parameters
need for efficient algorithm to calculate gradient
need for generic algorithm usable for arbitrary
number of layers and neurons in each layer.

The strategy (Rumelhart et al., 1986, Nature)

backpropagation
derivatives in outer layer L are easy
derivatives in layer  as a function of derivatives in
layer 
all about the chain rule for derivatives!

Gradient descent and backpropagation

w

min
w

L(w),

wnew = wold − η ⋅ ∇wL(wold),

η

n

∇wL(w) =
n

∑
i=1

∇wLi

1

n

l

l + 1
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model = model.compile(
    loss = 'categorical_crossentropy',
    optimizer = keras.optimizers.RMSprop(),  
    metrics = ['accuracy']
  )

In additition to the loss function, other performance
measures (metrics) can be tracked while calibrating
the model.

accuracy  (= categorical_accuracy)
binary_accuracy

categorical_accuracy

sparse_categorical_accuracy

top_k_categorical_accuracy

sparse_top_k_categorical_accuracy

cosine_proximity

any loss function

Performance metrics
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

Your turn

As discussed, any loss function can be also used as an accuracy metric.

In the case of the MNIST dataset, we search for a model with a high accuracy. Hereto, we
calculate the number of times the class of the observed  equals the predicted class , and
divide by the size of the (training) set.

Q: Why can we not use accuracy as our loss function?

y ŷ
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model.fit(
    x = input,
    y = output,
    epochs = 10, 
    batch_size = 128,
    validation_split = 0.2,
    verbose = 1
  )

The first arguments are the input data (here: training
images stored in input ) and their corresponding class
(here: 0-9, the labels of the training data, stored in
output ).

Fitting the model
fit(.)  tunes the model parameters (the weights and bias terms).

We use fit()  to start executing model training.

53 / 107



model.fit(
    x = input,
    y = output,
    epochs = 10,
    batch_size = 128,
    validation_split = 0.2, 
    verbose = 1
  )

Parameter updates are calculated based on small subsets
of the training data with batch_size  elements.

An epoch  is one iteration of the algorithm over the full
dataset.

Source: Bradley Boehmke

Fitting the model (cont.)
fit(.)  tunes the model parameters (the weights and bias terms).

We use fit()  to start executing model training.
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With batch gradient descent:

compute loss for each observation in the training data
update parameters after all training examples have
been evaluated
con: scales horribly to bigger data sets.

With stochastic gradient descent:

randomly select an observation, compute gradient
update parameters after this single observation has
been evaluated
con: takes a long time to convergence.

With mini-batch gradient descent:

randomly select a subset of the training observations,
compute gradient
update parameters after this subset has been
evaluated.

Pros:

balance efficiency of batch vs stochastic
balance robust convergence of batch with some
stochastic nature to avoid local minima.

Cons:

additional tuning parameter.

Three variants of gradient descent
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model.fit(
    x = input,
    y = output,
    epochs = 10, 
    batch_size = 128, 
    validation_split = 0.2,
    verbose = 1
  )

With the validation_split = 0.2  we use the last 20% of
our input training data as a hold-out validation set.

We evaluate the loss on this validation set at the end of
each epoch.

Fitting the model (cont.)
fit(.)  tunes the model parameters (the weights and bias terms).

56 / 107





Your turn
You will now design, compile and fit your own neural network for the MNIST dataset.

As a form of paralellized model selection, all of us will play with different model parameters.
This way we gain insight into which parameter values work well for this dataset.

Base model: the neural network with a single hidden layer, as specified in the R script.

Try some of the following ideas to improve the model: (more ideas on the next slide!)

add hidden layers: the number of nodes in subsequent layers should decrease

change batch size

change the activation function.
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

Your turn

Examples of layer types

keras.layers.BatchNormalization : adds gaussian noise N(0, stddev) to the nodes when
training the model. This reduces the probability of overfitting.

model = model.add(
  keras.layers.GaussianNoise(stddev = .1)
)

keras.layers.Dropout : sets a fraction rate  of the input units to zero. This reduces the
probability of overfitting.

model = model.add(
  keras.layers.Dropout(rate = 0.05)
)

keras.layers.BatchNormalization : centers and scales the values of each node in the
previous layer.

model = model.add(
  keras.layers.BatchNormalization
)
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Model evaluation
evaluate(.)  calculates losses and metrics on the test dataset.

model.evaluate(test_input, test_output, verbose = 0)

##      loss  accuracy 
## 0.2336414 0.9341000

predict(.)  returns a vector of length 10 with the probability per output node.

prediction = model.predict(test_input, verbose = 0)

##  [1] 0.000 0.000 0.001 0.003 0.000 0.000 0.000 0.995 0.000 0.001

The predicted category is the node with the highest probability.

labels = np.argmax(prediction, axis=1)
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np.where(labels != y_test)[0]

## [1]  9 34 39 64 88 93

Model evaluation (cont.)
We inspect the misclassified images to gain more insight in the model.

Below we show some examples for our pre-trained MNIST neural network.
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Model evaluation (cont.)
We inspect the images for which the model assigns the lowest probability to the correct class.

# select per row, the probability corresponding to the correct class
prob_correct = np.array([prediction[row, correct] for row, correct in enumerate(y_test)])

# get the index of the 5 lowest records in prob_correct
lowest_score = np.where(prob_correct.argsort().argsort() < 5)[0]
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

Your turn
You will now evaluate your own model!

Q.1: calculate the accuracy of your model on the test set.

Q.2: visualize some of the misclassified images from your model.

Q.3: generate an image consisting of random noise and let the model classify this image.
What do you think of the results?
Remember: Your input should be a 1x784 array (or tensor) with values in [0,255].
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noise = np.floor(np.random.rand(1, 28*28) * 256)
noise.shape

model.predict(noise)

##      [,1] [,2]  [,3]  [,4]  [,5]  [,6]  [,7]  [,8]  
## [1,]    0    0 0.617 0.124 0.002 0.196 0.042 0.001 0

Our pre-trained MNIST model is pretty sure that the input
on the left is a two!

Feeding random data to a neural network
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Every node in the first hidden layer has 784 connections
with the input layer.

The weights of these connections can be visualized as an
28x28 image.

node = 9
layer = 0
weights = first_model.layers[layer].get_weights()[:, no

def visualize_weight(weights:np.ndarray) -> None:
  weights = weights / np.max(np.abs(weights))
  plt.imshow(weights, cmap = 'RdYlGn', alpha = np.abs(w

visualize_weight(np.reshape(weights, (28, 28)))

On the right we show a visualization of the calibrated
weights for a pre-trained model with (only) 16 nodes in the
first hidden layer.

Model understanding
Inspecting the calibrated weights can provide some insight in the features created in the hidden layer.
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We discussed so far:

design neural networks sequentially in {keras}
keras_model_sequential

layers consist of nodes and connections

vanilla choice is a fully connected layer
layer_dense

fit the model via gradient descent (i.e.
backpropagation).

List of tuning/architectural choices:

the number of layers
the number of nodes per layer
the activation functions
the layer type (more on this coming soon)
the loss function
the optimization algorithm
the batch size
the number of epochs
...

Summary of the fundamentals
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Claim frequency and severity regression
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Regression with neural networks
Create a training and test set:

In Module 1 we fitted GLMs for claim frequency as follows:

We now redefine this model as a neural network:

Formula GLM Neural network

response output node

  Poisson     distribution   loss function

exp inverse link function   activation function  

predictors input nodes

parameters weights

Y ∼ Poisson(λ = exp(x
′

β)).

Y

x

β
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nn_freq_intercept = keras.models.Sequential([
  keras.layers.Dense(units = 1, 
                     activation='exponential',
                     input_shape = [1],
                     use_bias = False)
])

nn_freq_intercept.compile(
  optimizer = 'RMSprop', 
  loss = 'poisson', 
  metrics = [tf.keras.metrics.MeanSquaredError()]
)

Q.: How many parameters does this model have?

layer_dense : there are no hidden layers, the input
layer is directly connected to the output layer.

units = 1 : there is one output node.

activation = 'exponential' : we use an exponential
inverse link function.

input_shape = c(1) : there is one input node, i.e., the
intercept which will be constant one.

use_bias = FALSE : we don't need a bias term, since
we explicitly include an input node equal to one.

loss = 'poisson' : we maximize the Poisson
likelihood, i.e., minimize the Poisson deviance.

Your first claim frequency neural network
Let's start with a model with only an intercept:

Y ∼ Poisson(λ = exp(1 ⋅ β)).
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nn_freq_intercept = keras.models.Sequential([
  keras.layers.Dense(units = 1, 
                     activation='exponential',
                     input_shape = [1],
                     use_bias = False)
])

nn_freq_intercept.compile(
  optimizer = 'RMSprop', 
  loss = 'poisson', 
  metrics = [tf.keras.metrics.MeanSquaredError()]
)

Q.: How many parameters does this model have?

nn_freq_intercept.count_params()

## [1] 1

layer_dense : there are no hidden layers, the input
layer is directly connected to the output layer.

units = 1 : there is one output node.

activation = 'exponential' : we use an exponential
inverse link function.

input_shape = c(1) : there is one input node, i.e., the
intercept which will be constant one.

use_bias = FALSE : we don't need a bias term, since
we explicitly include an input node equal to one.

loss = 'poisson' : we maximize the Poisson
likelihood.

Your first claim frequency neural network
Let's start with a model with only an intercept:

Y ∼ Poisson(λ = exp(1 ⋅ β)).
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Create vectors for the input and output:

input_intercept = np.ones(train.shape[0])
counts = np.array(train['nclaims'])

Fit the neural network:

nn_freq_intercept.fit(x = input_intercept,
                      y = counts,
                      epochs = 30,
                      batch_size = 1024,
                      validation_split = 0,
                      verbose = 0)

x = intercept : use the intercept as feature.

y = counts : use the claim counts as target.

epochs = 20 : perform 20 training iterations over the
complete data.

batch_size = 1024 : use batches with 1024
observations to update weights.

validation_split = 0 : don't use a validation set, so
all observations are used for training.

verbose = 0 : silence keras such that no output is
generated during fitting.

Your first claim frequency neural network (cont.)
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Comparing our neural network with a GLM
We compare the results of our neural network with the same model specified as a GLM:

import statsmodels.api as sm
glm_freq_intercept = sm.formula.glm(
  "nclaims ~ 1", 
  data=train, 
  family=sm.families.Poisson()
).fit()

# GLM coefficients
glm_freq_intercept.params

## NN weights
nn_freq_intercept.get_weights()[0]

## (Intercept) 
##   -2.091133
## [[1]]
##           [,1]
## [1,] -2.085138

There is a small difference in the parameter estimate, resulting from a different optimization technique.
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

Your turn

We have shown that a Poisson GLM can be implemented as a neural network.

Q.1: adapt this code to replicate a binomial GLM with a logit link function. Add

accuracy as a metric in your model.
Hint 1: the sigmoid  activation function is the inverse of the logit link function.
Hint 2: the binary_crossentropy  loss maximizes the loglikelihood of Bernoulli outcomes:

Q.2: fit your NN on the outcome or target variable (nclaims > 0), i.e., modeling no claim
versus having at least one claim.

Q.3: compare your fitted neural network with a GLM.

n

∑
i=1

(yi ⋅ log(pi) + (1 − yi) ⋅ log(1 − pi)).
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The Poisson loss function, including exposure, is

which is proportional to:

This is the loss function for a Poisson model with:

observations  and

weights .

Notice indeed how the parameter estimates of the
following two GLMs are identical:

glm_offset = sm.formula.glm("nclaims ~ 1", 
                            data=train, 
                            offset = np.log(train.expo)
                            family=sm.families.Poisson(
glm_offset.params

train['claims_per_expo'] = train.nclaims / train.expo

glm_weights = sm.formula.glm("claims_per_expo ~ 1", 
                             data=train, 
                             freq_weights = train.expo,
                             family=sm.families.Poisson
glm_weights.params

## (Intercept)       ageph 
## -1.22357710 -0.01644835
## (Intercept)       ageph 
## -1.22357710 -0.01644835

Taking exposure into account in a neural network

L = ∑
i

expoi ⋅ λi − yi ⋅ log(expoi ⋅ λi),

L = ∑
i

expoi ⋅ (λi − log(λi)).
yi

expoi

yi

expoi

expoi
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Nothing changes in our neural network model
specification:

nn_freq_exposure = keras.models.Sequential([
  keras.layers.Dense(units = 1, 
                     activation='exponential',
                     input_shape = [1],
                     use_bias = False)
])

nn_freq_exposure.compile(
  optimizer = 'RMSprop', 
  loss = 'poisson', 
  metrics = [tf.keras.metrics.MeanSquaredError()]
)

It is however good practice to always recompile.

Otherwise the neural network will pick up where it left off
last time, with the optimal weights after fitting.

Create a vector with exposure values:

exposure = np.array(train['expo'])

Divide claim counts by exposure and use weights:

nn_freq_exposure.fit(x = input_intercept,
                     y = counts/exposure,
                     sample_weight = exposure,
                     epochs = 20,
                     batch_size = 1024,
                     validation_split = 0,
                     verbose = 0)

Stay tuned to find out how to include exposure via an
offset term!

Taking exposure into account in a neural net (cont.)
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Let's start by adding one feature, namely ageph :

ageph = np.array(train['ageph'])

Define the neural network architecture with a hidden layer:

nn_freq_ageph = keras.models.Sequential([
  keras.layers.BatchNormalization(input_shape = [1]),
  keras.layers.Dense(units = 5, activation='tanh'),
  keras.layers.Dense(units = 1, activation='exponential
])

nn_freq_ageph.compile(
  optimizer = 'RMSprop', 
  loss = 'poisson', 
  metrics = [tf.keras.metrics.MeanSquaredError()]

Pre-processing (see Module 1):

layer_batch_normalization  centers and scales the input
features (here only one) per mini-batch.

Hidden layer:

layer_dense  with five nodes and the tanh  activation
function.

Output layer:

layer_dense  with one node and the exponential
activation function.

Notice how we set use_bias = TRUE  for the intercept.

Adding an input feature and a hidden layer
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Let's fit our brand new neural net:

nn_freq_ageph.fit(ageph,
                 counts/exposure,
                 sample_weight = exposure,
                 epochs = 60,
                 batch_size = 1024,
                 validation_split = 0,
                 verbose = 0)

We compare the fit with a GAM with a smooth effect for
ageph :

Q.: What do you think about those fits?

Adding an input feature and a hidden layer (cont.)
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Figure taken from Schelldorfer and Wuthrich (2019).

The output node, without skip connection, calculates:

With a skip connection, this simply becomes:

We take a linear combination of the last hidden layer
outputs and add the skip input, before applying the
activation function.

So, what can we do with this?

Adding a skip connection in a neural network
So far, we stayed in a purely sequential architecture with keras_model_sequential() .

Now, we will allow some input nodes to be connected directly to the output node, i.e., skip connections.

factivation(∑
i

wihi + b).

factivation(∑
i

wihi + b + s).
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Adding a skip connection in a neural network (cont.)
Let's take a claim frequency example with the exponential  activation function.

Adding exposure as an offset term:

Adding a base prediction:

The combination of both:

A skip connection allows us to guide the neural net in the right direction and to model adjustments on top of the base
predictions, for example obtained via a GLM or GAM. In the actuarial lingo this is called a Combined Actuarial Neural Network
(CANN).

output = exp(∑
i

wihi + b + log(expo)) = expo ⋅ exp(∑
i

wihi + b).

output = exp(∑
i

wihi + b + log(base)) = base ⋅ exp(∑
i

wihi + b).

output = exp(∑
i

wihi + b + log(expo ⋅ base)) = expo ⋅ base ⋅ exp(∑
i

wihi + b).

79 / 107



Adding a skip connection in a neural network (cont.)
Structure of the CANN model we are going to implement
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Adding a skip connection in a neural network (cont.)
There are now multiple sources of input data (covariates and skip connection). Hence, the sequential API can no longer be
used and we switch to the procedural API for defining our neural network.

We first define the path of the covariate ageph . Apply no activation function in the final layer (= linear activation function). The
exponential activation function will be applied later after adding the value from the skip connection.

input_nn = keras.layers.Input(shape = (1,), name = 'nn')

norm_nn = keras.layers.BatchNormalization()(input_nn)
dense_1 = keras.layers.Dense(units = 16, activation = 'relu')(norm_nn)
output_nn = keras.layers.Dense(units = 1, activation = 'linear')(dense_1)

Create an input for the skip connection.

input_skip = keras.layers.Input(shape = (1,), name = 'skip')
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Adding a skip connection in a neural network (cont.)
Combine the neural network and skip connection via keras.layers.Add  and pass through the exponential  function with fixed
weights (bias zero, weights 1):

interm = keras.layers.Add()([output_nn, input_skip])
init = constant_initializer(np.ones((1,1)))
output = keras.layers.Dense(units = 1, 
                               activation = 'exponential', 
                               trainable = False,
                               kernel_initializer = init,
                               name = 'output')(interm)

Define the full model with inputs and output via keras.models.Model  and compile as usual:

cann = tf.keras.models.Model(inputs = [input_nn, input_skip], outputs = output)
cann.compile(optimizer = 'RMSprop', loss = 'poisson', metrics = [tf.keras.metrics.MeanSquaredError()])
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Collect the CANN input data in a named list:

cann_input = {
  'nn':np.array(train['ageph']), 
  'skip':np.array(skip_glm)
}

Fit the CANN like we have seen before:

cann.fit(x = cann_input,
         y = counts,
         epochs = 40,
         batch_size = 1024,
         validation_split = 0,
         verbose = 1)

Adding a skip connection in a neural network (cont.)
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Adding a skip connection in a neural network (cont.)
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Convolutional neural networks (CNNs)
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With ANNs, our first step in the MNIST analysis was to
flatten the image matrix into a vector:

input = tf.reshape(x_train, [len(x_train), 28*28])

This approach

is not translation invariant. A completely different set
of nodes gets activated when the image is shifted.

ignores the dependency between nearby pixels.

requires a large number of parameters/weights as
each node in the first hidden layer is connected to all
nodes in the input layer.

Source: Sumit Saha

Convolutional layers allow to handle multi-
dimensional data, without flattening.

The problems with flattening
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The weights in a 2d convolutional layer are structured in a
small image, called the kernel or the filter.

We slide the kernel over the input image, multiply the
selected part of the image and the kernel elementwise and
sum:

Source: Bradley Boehmke

Convolutional layers
Classical hidden layers (as we have seen so far) use 1 dimensional inputs to construct 1 dimensional features.

2d convolutional layers use 2 dimensional input (for example images) to construct 2 dimensional feature maps.
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The weights in a 2d convolutional layer are structured in a
small image, called the kernel or the filter.

We slide the kernel over the input image, multiply the
selected part of the image and the kernel elementwise and
sum:

Source: Bradley Boehmke

Convolutional layers (cont.)
Classical hidden layers (as we have seen so far) use 1 dimensional inputs to construct 1 dimensional features.

2d convolutional layers use 2 dimensional input (for example images) to construct 2 dimensional feature maps.
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A useful feature for classifying the number four is the
presence of straight, vertical lines.

Q: How should the kernel look to detect this feature?

original image:

Convolutional layers (cont.)
2d convolutional layers can detect the same, local feature anywhere in the image.
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A useful feature for classifying the number four is the
presence of straight, vertical lines.

Q: How should the kernel look to detect this feature?

original image:

feature map:

Convolutional layers (cont.)
2d convolutional layers can detect the same, local feature anywhere in the image.
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Add a 2d convolutional layer with layer_conv_2d() :

model_conv = keras.models.Sequential([
    keras.layers.Conv2D(
        filters = 8,
        kernel_size = (3, 3),
        strides = (1, 1),
        input_shape = (28, 28, 1)
    )
])

filters = 8 :

We construct 8 feature maps associated to different
kernels/filters.

kernel_size = (3, 3) :

The filter/kernel has a size of 3x3.

strides = (1, 1) :

We move the kernel in steps of 1 pixel in both the
horizontal and vertical direction. This is a common
choice.

input_shape = (28, 28, 1) :

If this is the first layer of the model, we also have to
specify the dimensions of the input data. The input
consists of 1 image of size 28x28.

Convolutional layers in {keras}
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Pooling layers divide the image in blocks of equal size
and then aggregate the data per block.

Two common operations are:

average pooling

keras.layers.AveragePooling2D(
        pool_size = (2, 2),
        strides = (2, 2)
    )

max pooling

keras.layers.MaxPool2D(
        pool_size = (2, 2),
        strides = (2, 2)
    )

pool_size = (2, 2) :

Pool blocks of 2x2

strides = (2, 2) :

Move in steps of size 2 in both the horizontal and
vertical direction.

Pooling layers
A convolution layer is typically followed by a pooling step, which reduces the size of feature maps.
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When all features are extracted, the data is flattened.

This data can be seen as engineered features,
automatically created by the CNN architecture.

In a next step, a feed-forward ANN is used to analyze these
local features.

model_conv = keras.models.Sequential([
    keras.layers.Conv2D(...),
    keras.layers.MaxPool2D(...),
    keras.layers.Flatten()
  ])

model_conv = keras.models.Sequential([
    keras.layers.Conv2D(...),
    keras.layers.MaxPool2D(...),
    keras.layers.Flatten() 
    keras.layers.Dense()
  ])

Flattening layers
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A CNN architecture
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The image input data is not flattened this time:

from keras.datasets import mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data(

We need to expand the axis with one extra dimension:

input_train = tf.expand_dims(x_train, axis = -1)
input_test = tf.expand_dims(x_test, axis = -1)

The output labels are one-hot encoded like before:

output_train = keras.utils.to_categorical(y_train)
output_test = keras.utils.to_categorical(y_test)

Let's fit a CNN to the MNIST data:

model_conv = keras.models.Sequential([
    keras.layers.Conv2D(
        filters = 8,
        kernel_size = (3, 3),
        strides = (1, 1),
        input_shape = (28, 28, 1)
    ),
    keras.layers.MaxPool2D(
        pool_size = (2, 2),
        strides = (2, 2)
    ),
    keras.layers.Flatten(),
    keras.layers.Dense(units = 10, activation = 'softma
  ])

model_conv.compile(
    loss = 'categorical_crossentropy', 
    optimizer = keras.optimizers.RMSprop(), 
    metrics = ['accuracy']
  )

A CNN with the MNIST data
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Inspecting the filter/kernel
The 8 3x3 filters can be extracted from the network via .get_weights() :

filters = model_conv.layers[0].get_weights()[0]
filters.shape

## [1] 3 3 1 8

Q: can you find an interpretation for each of these filters?
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

Your turn

Time for you to experiment with CNNs in {keras}. Why not try to achieve 98% accuracy?

We have now built convolutional neural networks using layer_conv_2d().
In addition, {keras} offers layer_conv_1d() and layer_conv_3d().

Q: For which data would you use layer_conv_1d()?

Q: For which data would you use layer_conv_3d()?
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Auto encoders
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Unsupervised machine learning algorithm.

Dimension reduction of the input data,
comparable with PCA. The low dimensional
compressed data is often used as an input in
predictive models.

Input and output are identical.

Few nodes in the center of the network. This is the
compressed feature space.

A high performing auto encoder is capable of
reconstructing the input data based on compressed
feature space.

Auto encoders
Auto encoders compress the input data into a limited number of features.
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

Your turn

Auto encoders can be implemented in Keras using the same tools that you have already
learned during this course.
The following steps guide you in constructing and training your personal auto encoder for
the MNIST dataset.

Make a sketch of the neural network that you will implement.

Define a neural network with 5 layers:

Layer 1: input (784 nodes)
Layer 2: Hidden layer (128 nodes)
Layer 3: Hidden layer (32 nodes), this is the compressed feature space
Layer 4: Hidden layer (128 nodes)
Layer 5: Output layer (784 nodes)

Choose an appropriate activation function for each layer:

identity
ReLU
sigmoid
softmax
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

Your turn

Which of these loss functions can we use to train the model?

mse
binary_crossentropy
categorical_crossentropy

Fit the model on the MNIST data in 10 epochs.

Experiment with adding other layer types to the model:

layer_gaussian_noise(stddev)
layer_dropout(rate)
layer_batch_normalization()
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input_train_flatten = tf.reshape(x_train, [len(x_train)

input_encoder = tf.keras.layers.Input(shape = (784,))
layer1 = keras.layers.Dense(units = 128, activation = '
encoder = keras.layers.Dense(units = 32, activation = '

# decode the input
layer3 = keras.layers.BatchNormalization()(encoder)
layer4 = keras.layers.Dense(units = 128, activation = '
decoded = keras.layers.Dense(units = 784, activation = 

model = keras.models.Model(inputs = input_encoder, outp

model.compile(
    loss = 'binary_crossentropy',
    optimizer = keras.optimizers.RMSprop(), 
    metrics = ['mse']
)

model.fit(
    x = input_train_flatten,
    y = input_train_flatten,
    epochs = 10,
    batch_size = 1024,
    validation_split = 0.2,
    verbose = 1
  )

encoder  contains the first part of the model for
compressing the model.

model  is the full auto encoder, including the encode and
decode step.

By defining model  as an extension of encoder , we can
compress the data using predict(encoder, ...)  after
training the model.
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input_train_flatten = tf.reshape(x_train, [len(x_train)

input_encoder = tf.keras.layers.Input(shape = (784,))
layer1 = keras.layers.Dense(units = 128, activation = '
encoder = keras.layers.Dense(units = 32, activation = '

# decode the input
layer3 = keras.layers.BatchNormalization()(encoder)
layer4 = keras.layers.Dense(units = 128, activation = '
decoded = keras.layers.Dense(units = 784, activation = 

model = keras.models.Model(inputs = input_encoder, outp

model.compile(
    loss = 'binary_crossentropy',
    optimizer = keras.optimizers.RMSprop(), 
    metrics = ['mse']
)

model.fit(
    x = input_train_flatten,
    y = input_train_flatten,
    epochs = 10,
    batch_size = 1024,
    validation_split = 0.2,
    verbose = 1
  )

I interpret the hidden nodes as binary features and
therefore use a sigmoid  activation function.

We no longer use the softmax  activation function in the
last layer, since multiple output nodes can be activated
simultaneously.

I choose binary_crossentropy  as a loss function, since we
have independent bernoulli outcome variables.

Another good combination would have been:

activation ReLU  in the hidden layers
activation identity  in the output layer
mse  as the loss function

103 / 107



input_train_flatten = tf.reshape(x_train, [len(x_train)

input_encoder = tf.keras.layers.Input(shape = (784,))
layer1 = keras.layers.Dense(units = 128, activation = '
encoder = keras.layers.Dense(units = 32, activation = '

# decode the input
layer3 = keras.layers.BatchNormalization()(encoder)
layer4 = keras.layers.Dense(units = 128, activation = '
decoded = keras.layers.Dense(units = 784, activation = 

model = keras.models.Model(inputs = input_encoder, outp

model.compile(
    loss = 'binary_crossentropy',
    optimizer = keras.optimizers.RMSprop(), 
    metrics = ['mse']
)

model.fit(
    x = input_train_flatten,
    y = input_train_flatten,
    epochs = 10,
    batch_size = 1024,
    validation_split = 0.2,
    verbose = 1
  )

The input  variable is also passed to the model as the
output  parameter.
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The big test
Let's compare the input and output of our auto encoder.

result = model.predict(input_train_flatten)
# the original image
plt.imshow(np.reshape(input_train_flatten[1,:], (28, 28)), cmap='gray') 
# the reconstruction of the model
plt.imshow(np.reshape(input_train_flatten[1,:], (28, 28)), cmap='gray')
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What happens with random noise?
noise = np.floor(np.random.rand(1, 28*28) * 256)
plt.imshow(np.reshape(model.predict(noise), (28, 28)), cmap='gray')
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Thanks!

Slides created with the R package xaringan.

Course material available via
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