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Introduction

Course
 https://github.com/katrienantonio/hands-on-machine-learning-R-module-1

The course repo on GitHub, where you can find the data sets, lecture sheets, R scripts and R markdown files.

Us
 https://katrienantonio.github.io/ & https://be.linkedin.com/in/jonascrevecoeur &

https://be.linkedin.com/in/roelhenckaerts

 katrien.antonio@kuleuven.be & roel.henckaerts@kuleuven.be

 (Katrien) Professor in insurance data science

 (Jonas) PhD in insurance data science, now consultant in statistics, data science and data engineering with Data Minded

 (Roel) PhD in insurance data science, now consultant in data science with AI start up Prophecy Labs
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Checklist
☑ Do you have a fairly recent version of R?

☑ Do you have a fairly recent version of RStudio?

☑ Have you installed the R packages listed in the software requirements?

or

☑ Have you created an account on posit cloud (to avoid any local installation issues)?
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Why this course?

The goals of this course 

develop practical machine learning (ML) foundations

fill in the gaps left by traditional training in actuarial science or econometrics

focus on the use of ML methods for the analysis of frequency + severity data, but also non-standard data
such as images

explore a substantial range of methods (and data types) (from GLMs to deep learning), but - most importantly -

build foundation so that you can explore other methods (and data types) yourself.

"In short, we will cover things that we wish someone had taught us in our undergraduate programs."
This quote is from the Data science for economists course by Grant McDermott.
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Prologue

Knowing me, knowing you:
statistical and machine learning

Supervised and unsupervised learning
Regression and classification
Statistical modeling: the two cultures

Model accuracy and loss functions

Overfitting and bias-variance tradeoff

Data splitting, Resampling methods

Parameter tuning

with {caret}, {rsample} and {purrr}

Target and feature engineering

Data leakage
Pre-processing steps
Specifying blue-prints with {recipes}
Putting it all together: {recipes} and
{caret}/{rsample}

Regression models

Creating models in R and tidy model output with
{broom}
GLMs with {glm}
GAMs with {mgcv}
Regularized (G)LMs with {glmnet}.

Module 1's Outline
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Some roadmaps to explore the ML landscape...

Source: Machine Learning for Everyone In simple words. With real-world examples. Yes, again.
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Knowing me, knowing you:

statistical and machine learning

9 / 156



Supervised learning builds ("learns") a model
 (the Signal) such that the outcome or target
 can be written as

with features  and error term  (the
Noise).

Supervised learners construct predictive
models.

Supervised learning

f

Y

Y = f(x1, … , xp) + ϵ

x1, … , xp ϵ

Picture taken from Machine Learning for Everyone. In simple words. With real-world examples. Yes, again
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With unsupervised learning there is NO
outcome or target , only the feature vector

.

Let  denote the sample size and  the
number of features.

Then,  is the  matrix of features, with
 observation  on variable or feature .

Unsupervised learners construct descriptive
models, without any supervising output,
letting the data "speak for itself".

Unsupervised learning

Y

x = (x1, … , xp)

n p

X n × p

xi,j i j

Picture taken from Machine Learning for Everyone. In simple words. With
real-world examples. Yes, again
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Picture taken from this source.
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https://twitter.com/athena_schools/status/1063013435779223553


What's in a name?
Machine learning constructs algorithms that learn from data.

Statistical learning emphasizes statistical models and the assessment of uncertainty.

Data science applies mathematics, statistics, machine learning, engineering, etc. to extract knowledge form data.

"Data Science is statistics on a Mac . "

                    

Source: Brandon M. Greenwell on Introduction to Machine Learning in .
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Statistical learning or data modeling culture

assume statistical model, estimate parameter values
validate with goodness-of-fit tests and residual
inspection

Machine learning or algo modeling culture

inside of the box is complex and unknown
find algorithm  to predict 
measure performance by predictive accuracy

Statistical modeling: the two cultures
Consider a vector of input variables , being transformed into some vector of response variables  via a black box algorithm.

Source: Breiman (2001, Statistical Science) on Statistical modeling: the two cultures.

x y

f(x) y
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Newspeak from the two cultures

Statistical learning Machine learning

origin statistics computer science

f(x) model algorithm

emphasis interpretability, precision and uncertainty large scale applicability, prediction accuracy

jargon parameters, estimation weights, learning

CI uncertainty of parameters no notion of uncertainty

assumptions explicit a priori assumption no prior assumption, learn from the data

Source: read the blog Why a mathematician, statistician and machine learner solve the same problem differently
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

Your turn

As discussed in the lecture, many problems in ML can be approached as a regression,

classification or clustering problem.

Q: consider the following three problem settings and label them as regression, classification
or clustering.

1. In disability insurance: how do disability rates depend on the state of the economy (e.g.
GDP)?

2. In MTPL insurance: predict whether a claim is attritional or large, in casu a claim that
exceeds the threshold of 100 000 EUR?

3. How can we group customers based on the insurance products they bought from the
company?
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Model accuracy and loss functions
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prediction
predict the target  as 

 - as black box setting?

inference
how does target  depend on features ?

 - as white box setting?

Predictive modeling
How to use the observed data to learn or to estimate the unknown ?

How do I estimate  - one way to phrase all questions that underly statistical & machine learning.

Take-aways    -   main reasons we want to learn about 

f(. )

y = f(x1, x2, … , xp) + ϵ.

f(. )

f(. )

y f̂ (x)

y x
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Prediction errors
Why we're stuck with irreducible error

assume  and  given, then

In less math:

if  exists, then  cannot perfectly explain 

so even if , we still have irreducible error.

Thus, to form our best predictors, we will minimize reducible error.

f̂ x

E[{y − ŷ}
2] = E[{f(x) + ϵ − f̂ (x)}

2
]

= [f(x) − f̂ (x)]
2


Reducible

+ Var(ϵ)


Irreducible

ϵ x y

f̂ = f
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Regression, use e.g. the Mean Squared Error (MSE)

Recall:  is the prediction error.

Objective  : minimize!

Classification, use e.g. the cross-entropy or log loss

Objective  : minimize!

Model accuracy
We assess model or predictive accuracy by evaluating how well predictions actually match observed data.

Use loss functions, i.e. metrics that compare predicted values to actual values.

Many other useful loss functions (e.g. deviance in regression, Gini index in classification).

Take-away    -   a loss function emphasizes certain types of errors over others, thus pick a meaningful one!

n

∑
i=1

(yi − f̂ (xi))2,
1

n

yi − ŷ i = yi − f̂ (xi)

−
n

∑
i=1

(yi ⋅ log (pi) + (1 − yi) ⋅ log (1 − pi)) .
1

n
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Overfitting and bias-variance trade off
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Overfitting
The Signal and the Noise discussion!

Which of the following three models (in green-blue-ish) will best generalize to new data?

Inspired by Brandon Greenwell's Introduction to Machine Learning in .
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Overfitting (cont.)
With a small training error, but large test error, the model is overfitting or working too hard!

The expected value of the test MSE:

In general - with more flexible methods

variance  and bias 

their relative rate of change determines whether the test error increases or decreases

Take-aways 

U-shape curves of test MSE w.r.t model flexibility

the bias-variance tradeoff is central to quality prediction.

E(y0 − f̂ (x0))
2

= Var(f̂ (x0)) + [Bias(f̂ (x0))]2 + Var(ϵ).
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Bias-variance trade off

Source: James et al. (2021, 2nd edition) on https://www.statlearning.com/.
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

Your turn

Data are generated from: , with the black curve as the true . The orange (linear
regression), blue (smoothing splines) and green (smoothing splines) curves are three
estimates for , with increasing level of complexity.

Q: which model do you prefer (orange, blue, green) for each of the following examples? Why?

y = f(x) + ϵ f

f

Example from James et al. (2021) on https://www.statlearning.com/.
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

Your turn

Data are generated from: , with the black curve as the true . The orange (linear
regression), blue (smoothing splines) and green (smoothing splines) curves are three
estimates for , with increasing level of complexity.

Q: which model do you prefer (orange, blue, green) for each of the following examples? Why?

y = f(x) + ϵ f

f

Example from James et al. (2021) on https://www.statlearning.com/.
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

Your turn

Data are generated from: , with the black curve as the true . The orange (linear
regression), blue (smoothing splines) and green (smoothing splines) curves are three
estimates for , with increasing level of complexity.

Q: which model do you prefer (orange, blue, green) for each of the following examples? Why?

y = f(x) + ϵ f

f

Example from James et al. (2021) on https://www.statlearning.com/.
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

Your turn

The K-nearest neighbors (KNN) classifier

take the K observations in the training data set that are 'closest' to test observation ,
calculate

KNN then assigns the test observation  to the class  with the highest probability, e.g.
with K=3 (from James et al., 2021)

Q: is KNN a supervised learning or unsupervised learning method? Discuss.

x0

Pr(Y = j|X = x0) = ∑
i∈N0

I(yi = j).
1

K

x0 j
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

Your turn

The K-nearest neighbors (KNN) classifier (cont.)

Now compare KNN with K equals 1, 10 and 100.

          

Q: which classifier do you prefer? Which of these classifiers is under-fitting, which one is over-
fitting?

29 / 156



Data splitting and resampling methods
with {caret} and {rsample}
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Ames Iowa housing data
We will use the Ames Iowa housing data. There are 2,930 properties in the data set.

The Sale_Price  (target or response) was recorded along with 80 predictors, including:

location (e.g. neighborhood) and lot information
house components (garage, fireplace, pool, porch, etc.)
general assessments such as overall quality and condition
number of bedrooms, baths, and so on.

More details in De Cock (2011, Journal of Statistics Education).

The raw data are at http://bit.ly/2whgsQM  but we will use a processed version found in the AmesHousing  package.

You will load the data with the make_ames()  function from the AmesHousing  library, and store the data in the object ames :

ames <- AmesHousing::make_ames()
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Training set

to develop, to train,
to tune, to compare
different settings, ...

Test set

to obtain unbiased
estimate of final
model's
performance.

                       

Data splitting
We fit our model on past data  and get .

What we want: how does our model generalize to new, unseen data , or:   is  close to ?

{(x1, y1), (x2, y2), … , (xn, yn)} f̂

(x0, y0) f̂ (x0) y0

Picture taken from Introduction to Machine Learning in .
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set.seed(123)
index_1 <- sample(1 : nrow(ames), 
                  size = round(nrow(ames) * 0.7))  
train_1 <- ames[index_1, ]   
test_1  <- ames[-index_1, ]  

nrow(train_1)/nrow(ames)

Use set.seed()  for reproducibility.

Data splitting in base
We first demonstrate the splitting of the ames  housing data into a training and test set, using base  R instructions.
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set.seed(123) 
index_1 <- sample(1 : nrow(ames),
                  size = round(nrow(ames) * 0.7))
train_1 <- ames[index_1, ]   
test_1  <- ames[-index_1, ]  

nrow(train_1)/nrow(ames)

Sample indices from 1 : nrow(ames)  such that in total 70%
of the records is selected.

Vector index_1  now stores the row numbers of the
selected records.

Data splitting in base
We first demonstrate the splitting of the ames  housing data into a training and test set, using base  R instructions.
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set.seed(123) 
index_1 <- sample(1 : nrow(ames), 
                  size = round(nrow(ames) * 0.7))   
train_1 <- ames[index_1, ]
test_1  <- ames[-index_1, ]  

nrow(train_1)/nrow(ames)

Put the selected records in training set train_1  by
subsetting the original data frame ames  with the row
numbers stored in index_1 .

Data splitting in base
We first demonstrate the splitting of the ames  housing data into a training and test set, using base  R instructions.
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set.seed(123) 
index_1 <- sample(1 : nrow(ames), 
                  size = round(nrow(ames) * 0.7))   
train_1 <- ames[index_1, ]   
test_1  <- ames[-index_1, ]

nrow(train_1)/nrow(ames)

Put the not selected records in test set test_1 .

Data splitting in base
We first demonstrate the splitting of the ames  housing data into a training and test set, using base  R instructions.
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set.seed(123) 
index_1 <- sample(1 : nrow(ames), 
                  size = round(nrow(ames) * 0.7))   
train_1 <- ames[index_1, ]   
test_1  <- ames[-index_1, ]  

nrow(train_1)/nrow(ames)
## [1] 0.7

What is the ratio of the number of records in train_1
versus original data set ames ?

Data splitting in base
We first demonstrate the splitting of the ames  housing data into a training and test set, using base  R instructions.
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library(caret)
set.seed(123)
index_2 <- caret::createDataPartition(
                    y = ames$Sale_Price, 
                    p = 0.7, 
                    list = FALSE)
train_2 <- ames[index_2, ]
test_2  <- ames[-index_2, ]

nrow(train_2)/nrow(ames)

Load the library {caret}.

Use set.seed()  for reproducibility.

Data splitting in {caret}
The {caret} package - short for Classification And REgression Training - contains functions to streamline the model training
process for complex regression and classification problems.

With the {caret} package, the function createDataPartition  will do the job.
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library(caret) 
set.seed(123)  
index_2 <- caret::createDataPartition(
                    y = ames$Sale_Price,
                    p = 0.7,
                    list = FALSE)
train_2 <- ames[index_2, ]
test_2  <- ames[-index_2, ]

nrow(train_2)/nrow(ames)

createDataPartition  takes in y  the vector of outcomes of
the data set we wish to split. createDataPartition  will do
stratified sampling based on levels of y  (for factor) or
groups determined by the percentiles of y  (for numeric).

The percentage of data that goes to training is p .

list = FALSE  tells the function not to store the results in a
list, but in a matrix (here: with 1 column)

Data splitting in {caret}
The {caret} package - short for Classification And REgression Training - contains functions to streamline the model training
process for complex regression and classification problems.

With the {caret} package, the function createDataPartition  will do the job.
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library(rsample)
set.seed(123)
split_1  <- rsample::initial_split(ames, prop = 0.7)
train_3  <- training(split_1)
test_3   <- testing(split_1)

nrow(train_3)/nrow(ames)

Load the rsample  package.

Use set.seed()  for reproducibility.

Data splitting in {rsample}
The {rsample} package, part of the {tidymodels} initiative of RStudio, is home to a wide variety of resampling functions.

The documentation is at rsample: the basics.
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library(rsample)
set.seed(123) 
split_1  <- rsample::initial_split(ames, prop = 0.7)
train_3  <- training(split_1)
test_3   <- testing(split_1)

nrow(train_3)/nrow(ames)

initial_split  from the {rsample} package.

Split the data ames  into a training set and testing set.

prop  is the proportion of data to be retained as training

Data splitting in {rsample}
The {rsample} package, part of the {tidymodels} initiative of RStudio, is home to a wide very variety of resampling functions.

The documentation is at rsample: the basics.
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library(rsample)
set.seed(123) 
split_1  <- rsample::initial_split(ames, prop = 0.7)  
train_3  <- training(split_1)
test_3   <- testing(split_1)

nrow(train_3)/nrow(ames)

The result of rsample::initial_split  is an rset  object.

It is stored in split_1  and ready for inspection.

Apply the functions training  and test  to this object to
extract the data in each split.

Data splitting in {rsample}
The {rsample} package, part of the {tidymodels} initiative of RStudio, is home to a wide very variety of resampling functions.

The documentation is at rsample: the basics.
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Data splitting comparison
As a check, we plot the Sale_Price  as available in the train (in black) vs test (in red) data sets, created by each of the three
demonstrated methods.
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Resampling methods
In Data splitting, we discussed training and test set. Let's now dive deeper into resampling methods.

Validation set (visual inspired by Ed Rubin's course)

we hold out a subset of the training data (e.g. 30%) and then evaluate the model on this held out validation set

calculate the loss function on this validation set, as approximation of the true test error

 high variability + inefficient use of data

picture validation set (30%) and training set (70%)
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Resampling methods (cont.)
In Data splitting, we discussed training and test set. Let's now dive deeper into resampling methods.

k fold cross validation (visual inspired by Ed Rubin's course)

divide training data into k equally sized groups (e.g. group 1 on the picture)

iterate over the k groups, treating each as validation set once (and train model on the other k-1 groups) (e.g. get MSE1

corresponding to fold 1)

average the folds' loss to estimate the true test error

 greater accuracy (compared to validation set).
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Resampling methods (cont.)
In Data splitting, we discussed training and test set. Let's now dive deeper into resampling methods.

k fold cross validation (visual inspired by Ed Rubin's course)

divide training data into k equally sized groups (e.g. group 1 on the picture)

iterate over the k groups, treating each as validation set once (and train model on the other k-1 groups) (e.g. get MSE1

corresponding to fold 1)

average the folds' loss to estimate the true test error

 greater accuracy (compared to validation set).
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Resampling methods (cont.)
In Data splitting, we discussed training and test set. Let's now dive deeper into resampling methods.

k fold cross validation (picture from Boehmke & Greenwell)
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Resampling methods (cont.)
In Data splitting, we discussed training and test set. Let's now dive deeper into resampling methods.

Leave-one-out cross validation (visual inspired by Ed Rubin's course)

each observation takes a turn as the validation set (e.g. get MSE3)

other n-1 observations are the training set

average the folds' loss to estimate the true test error

 very computationally demanding.
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set.seed(123)  
cv_folds <- caret::createFolds(y = ames$Sale_Price,
                               k = 5, list = TRUE,
                               returnTrain = TRUE)

str(cv_folds)

## List of 5
##  $ Fold1: int [1:2344] 1 2 3 4 5 6 7 8 9 10 ...
##  $ Fold2: int [1:2343] 2 3 4 6 7 8 9 11 13 14 ...
##  $ Fold3: int [1:2344] 1 2 3 4 5 6 7 8 9 10 ...
##  $ Fold4: int [1:2344] 1 3 5 6 10 11 12 13 14 15 ...
##  $ Fold5: int [1:2345] 1 2 4 5 7 8 9 10 11 12 ...

The createFolds  function from {caret} splits the data into
k  groups.

list = TRUE  indicates that the results should be stored in
a list

returnTrain = TRUE  indicates that the values returned
(and stored) in the elements of the list are - per fold - the
row numbers of the observations selected for training.

Resampling methods in {caret}
We set up 5-fold cross validation using the {caret} package.
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set.seed(123)  
cv_folds <- caret::createFolds(y = ames$Sale_Price,    
                               k = 5, list = TRUE,     
                               returnTrain = TRUE)

str(cv_folds)

## List of 5
##  $ Fold1: int [1:2344] 1 2 3 4 5 6 7 8 9 10 ...
##  $ Fold2: int [1:2343] 2 3 4 6 7 8 9 11 13 14 ...
##  $ Fold3: int [1:2344] 1 2 3 4 5 6 7 8 9 10 ...
##  $ Fold4: int [1:2344] 1 3 5 6 10 11 12 13 14 15 ...
##  $ Fold5: int [1:2345] 1 2 4 5 7 8 9 10 11 12 ...

Inspect the list cv_folds  that was returned by
createFolds(.) .

This list has k  elements, each storing the row numbers of
the observations in the training set of the fold under
consideration.

Resampling methods in {caret}
We set up 5-fold cross validation using the {caret} package.
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mean(ames[cv_folds$Fold1, ]$Sale_Price)

## [1] 180954.3

map_dbl(cv_folds,                     
        function(x) {                   
          mean(ames[x, ]$Sale_Price)    
        })

##    Fold1    Fold2    Fold3    Fold4    Fold5 
## 180954.3 180781.8 180646.4 180563.0 181034.7

We calculate the average Sale_Price  per fold, that is: we
average the Sale_Price  over all observations selected in
the training set of a particular fold.

That would go as follows, for Fold1  in the list cv_folds

mean(ames[cv_folds$Fold1, ]$Sale_Price)

and similarly for Fold2 , ..., Fold5 .

Resampling methods in {caret}
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mean(ames[cv_folds$Fold1, ]$Sale_Price)

## [1] 180954.3

map_dbl(cv_folds,
        function(x) {
          mean(ames[x, ]$Sale_Price)
        })

##    Fold1    Fold2    Fold3    Fold4    Fold5 
## 180954.3 180781.8 180646.4 180563.0 181034.7

We apply the function mean(ames[___, ]$Sale_Price)  over
all k  elements of the list cv_folds .

map_dbl(.x, .f)  is one of the map  functions from the
{purrr} package (part of {tidyverse}), used for functional
programming in R.

map_dbl(.x, .f)  applies function .f  to each element of
list .x .

The result is a double-precision vector, hence map_dbl  and
not just map .

Btw, it is a historical anomaly that R has two names for its
floating-point vectors, double  and numeric .

Resampling methods in {caret}
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set.seed(123)  
cv_rsample <- rsample::vfold_cv(ames, v = 5)
cv_rsample$splits

## [[1]]
## <Analysis/Assess/Total>
## <2344/586/2930>
## 
## [[2]]
## <Analysis/Assess/Total>
## <2344/586/2930>
## 
## [[3]]
## <Analysis/Assess/Total>
## <2344/586/2930>
## 
## [[4]]
## <Analysis/Assess/Total>
## <2344/586/2930>
## 
## [[5]]
## <Analysis/Assess/Total>
# <2344/586/2930>

The function vfold_cv  splits the data into v  groups
(called folds) of equal size.

Resampling methods in {rsample}
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set.seed(123)  
cv_rsample <- rsample::vfold_cv(ames, v = 5) 
cv_rsample$splits

## [[1]]
## <Analysis/Assess/Total>
## <2344/586/2930>
## 
## [[2]]
## <Analysis/Assess/Total>
## <2344/586/2930>
## 
## [[3]]
## <Analysis/Assess/Total>
## <2344/586/2930>
## 
## [[4]]
## <Analysis/Assess/Total>
## <2344/586/2930>
## 
## [[5]]
## <Analysis/Assess/Total>
# <2344/586/2930>

The function vfold_cv  splits the data into v  groups
(called folds) of equal size.

We store the result of vfold_cv  in the object cv_rsample .

The resulting object stores v  resamples of the original
data set.

Resampling methods in {rsample}
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set.seed(123)  
cv_rsample <- rsample::vfold_cv(ames, v = 5)

cv_rsample$splits[[1]]

## <Analysis/Assess/Total>
## <2344/586/2930>

cv_rsample$splits[[1]] %>% analysis() %>% dim()

## [1] 2344   81

cv_rsample$splits[[1]] %>% assessment() %>% dim()

## [1] 586  81

Inspect the composition of the first resample:

2,344 (out of 2,930) observations go to the analysis data (for
training, i.e. v-1  folds),

586 (out of 2,930) observations go to the assessment data
(for testing, the final fold).

Resampling methods in {rsample}
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set.seed(123)  
cv_rsample <- rsample::vfold_cv(ames, v = 5)

cv_rsample$splits[[1]]

## <Analysis/Assess/Total>
## <2344/586/2930>

cv_rsample$splits[[1]] %>% analysis() %>% dim()

## [1] 2344   81

cv_rsample$splits[[1]] %>% assessment() %>% dim()

## [1] 586  81

Inspect the composition of the first resample:

get the dimensions ( dim() ) of the analysis data
( analysis() ) of the first resample

get the dimensions ( dim() ) of the assessment data
( assessment() ) of the first resample.

Resampling methods in {rsample}
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map_dbl(cv_rsample$splits,
        function(x) {
          mean(rsample::analysis(x)$Sale_Price)
        })

## [1] 181310.8 180991.0 180840.0 181268.6 179569.9

map_dbl(cv_rsample$splits,
        function(x) {
          nrow(rsample::analysis(x))
        })

## [1] 2344 2344 2344 2344 2344

As before, use map_dbl(.x, .f)  to apply a function .f
over all elements of a list .x .

Here the list is stored in cv_rsample$splits , with v = 5
elements.

Resampling methods in {rsample}
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

Your turn

Q: Now you're going to combine data splitting and resampling to create training, validation and
test folds in the Ames data.

Use caret  or rsample  and make the validation folds of the same size as the test fold.
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with caret

set.seed(5678)
ind_caret <- caret::createDataPartition(
                      y = ames$Sale_Price,
                      p = 5/6, list = FALSE)
train_caret <- ames[ind_caret, ]
test_caret  <- ames[-ind_caret, ]

cv_caret <- caret::createFolds(
            y = train_caret$Sale_Price, k = 5, 
            list = TRUE, returnTrain = FALSE)

purrr::map_dbl(cv_caret,
               ~ nrow(ames[., ]))
## Fold1 Fold2 Fold3 Fold4 Fold5 
##   488   488   489   489   489
nrow(test_caret)
## [1] 487

with rsample

set.seed(5678)
ind_rsample  <- rsample::initial_split(ames,
                                       prop = 5/6)
train_rsample  <- rsample::training(ind_rsample)
test_rsample   <- rsample::testing(ind_rsample)

cv_rsample <- rsample::vfold_cv(train_rsample, v = 5)

map_dbl(cv_rsample$splits,
        ~ nrow(rsample::assessment(.)))
## [1] 489 488 488 488 488
nrow(test_rsample)
## [1] 489

59 / 156



Parameter tuning with {caret}, {rsample} and {purrr}
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Finding the optimal level of flexibility highlights the bias-
variance tradeoff.

Bias : the error that comes from inaccurately estimating .

Variance : the amount  would change with a different
training sample.

Take-aways  : high variance models more prone

to overfitting

use resampling methods to reduce this risk

hyperparameters (or tuning parameters) control
complexity, and thus the bias-variance trade-off

identify their optimal setting, e.g. with a grid search

no analytic expression for these hyperparameters.

Tuning parameters

f

f̂

Code from Boehmke & Greenwell (2019, Chapter 2) on Hands-
on machine learning with R.
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Model training & validation phase

define a set of candidate values (a grid)

assess model utility across the candidates (use clever resampling)

choose the optimal settings (optimize loss)

refit the model on entire training data with final tuning parameters

evaluate performance of the model on the test data (under ).

Model selection

repeat the above steps for different models

compare performance of these models that will generalize to new
data (via test data, under ).

Tuning parameters via grid search

Flow chart from Kuhn & Johnson (2013) on Applied predictive modeling.
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set.seed(123)
cv <- trainControl(method = "cv", number = 5,
                   returnResamp = "all",  
                   selectionFunction = "best")
hyper_grid <- expand.grid(k = seq(2, 150, by = 2)) 
knn_fit <- train(y ~ x, data = df, method = "knn", 
                        trControl = cv, 
                        tuneGrid = hyper_grid)
knn_fit$bestTune

Use trainControl  from {caret} to set some control
parameters that will be used in the actual train  function.

Here, we use method = cv  and number = 5  for 5-fold cross
validation.

Training a model with {caret}
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set.seed(123)
cv <- trainControl(method = "cv", number = 5, 
                   returnResamp = "all",
                   selectionFunction = "best")
hyper_grid <- expand.grid(k = seq(2, 150, by = 2)) 
knn_fit <- train(y ~ x, data = df, method = "knn", 
                        trControl = cv, 
                        tuneGrid = hyper_grid)
knn_fit$bestTune

In trainControl  we put returnResamp = "all"  to store all
resampled summary metrics.

selectionFunction = "best"  specifies how we select the
optimal tuning parameter. With "best"  the value that
minimizes the performance (here: RMSE) is selected.

Alternative: selectionFunction = "oneSE"  applies the one
standard error rule.

Training a model with {caret}

64 / 156



set.seed(123)
cv <- trainControl(method = "cv", number = 5, 
                   returnResamp = "all",  
                   selectionFunction = "best") 
hyper_grid <- expand.grid(k = seq(2, 150, by = 2))
knn_fit <- train(y ~ x, data = df, method = "knn", 
                        trControl = cv, 
                        tuneGrid = hyper_grid)
knn_fit$bestTune

Set the grid of K-values that will be searched.

expand.grid  creates a data frame with one row for each
value of K to consider.

Training a model with {caret}
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set.seed(123)
cv <- trainControl(method = "cv", number = 5, 
                   returnResamp = "all",  
                   selectionFunction = "best") 
hyper_grid <- expand.grid(k = seq(2, 150, by = 2))  
knn_fit <- train(y ~ x, data = df, method = "knn",
                        trControl = cv,
                        tuneGrid = hyper_grid)
knn_fit$bestTune

{caret} will train  the method knn  using the settings in
trControl = cv , across the values of K stored in tuneGrid
= hyper_grid .

The data df  and formula y ~ x  are used.

Training a model with {caret}
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set.seed(123)
cv <- trainControl(method = "cv", number = 5, 
                   returnResamp = "all",  
                   selectionFunction = "best") 
hyper_grid <- expand.grid(k = seq(2, 150, by = 2))  
knn_fit <- train(y ~ x, data = df, method = "knn", 
                        trControl = cv, 
                        tuneGrid = hyper_grid) 
knn_fit$bestTune

##     k
## 18 36

We retrieve the optimal value of the tuning parameter,
according to the selectionFunction .

For the folds created here and with selectionFunction =
"best"  the optimal K value is 36.

What happens when you change to selectionFunction =
"oneSE" ?

Training a model with {caret}
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##     k
## 18 36

##     k
## 27 54

Training a model with {caret}
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Our starting point is the simulated data stored in df ,
resampled with 5-fold cross-validation.

set.seed(123)  # for reproducibility
cv_rsample <- vfold_cv(df, 5)
cv_rsample$splits[1:3]

## [[1]]
## <Analysis/Assess/Total>
## <286/72/358>
## 
## [[2]]
## <Analysis/Assess/Total>
## <286/72/358>
## 
## [[3]]
## <Analysis/Assess/Total>
## <286/72/358>

We fit the KNN on the holdout data in split s, using a given
K value.

holdout_results <- function(s, k_val) {
  # Fit the model to the analysis data in split s
  df_train <- analysis(s)
  mod <- knnreg(y ~ x, k = k_val, data = df_train)
  # Get the remaining group
  holdout <- assessment(s)
  # Get predictions with the holdout data set
  res <- predict(mod, newdata = holdout)
  # Return observed and predicted values 
  #                            on holdout set
  res <- tibble(obs = holdout$y, pred = res)
  res
}

Training a model with {rsample}
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

Your turn

Now you're going to combine the resampling and model fitting instructions and set up a first
example of tuning a parameter over a grid of possible values: the K in a KNN regression
model.

Q: use the function holdout_results(.s, .k)  as defined on the previous sheet. You will use
this function to calculate the RMSEk of fold k.

1. Specify a grid of values of K, store it in hyper_grid . Use expand.grid(.)

2. Pick one of the resamples stored in cv_rsample$splits  and pick a value from the grid.
Calculate the RMSE on the holdout data of this split.

3. For all values in the tuning grid, calculate the RMSE averaged over all folds, and the
corresponding standard error.

4. Use the results from Q.3 to pick the value of K via minimal RMSE.

5. Pick the largest value of K such that the corresponding RMSE is below the minimal RMSE
from Q.4 plus its corresponding SE.
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Q.1 We set up the grid

hyper_grid <- expand.grid(k = seq(2, 150, by = 2))  
hyper_grid %>% slice(1:3)

k

2

4

6

Q.2 We apply the function holdout_results(.s, .k)  on the
third resample, with the first value for K in the grid.

res <- holdout_results(cv_rsample$splits[[3]], 
                       hyper_grid[1, ])
sqrt(sum((res$obs - res$pred)^2)/nrow(res))

## [1] 0.3608923

Q.3 Mean RMSE over the 5 folds and corresponding SE.

RMSE <- numeric(nrow(hyper_grid))
SE <- numeric(nrow(hyper_grid))
for(i in 1:nrow(hyper_grid)){
  cv_rsample$results <- map(cv_rsample$splits,
                            holdout_results,
                            hyper_grid[i, ])
  res <- map_dbl(cv_rsample$results, 
                 function(x) mean((x$obs - x$pred)^2))
  RMSE[i] <- mean(sqrt(res)) ; SE[i] <- sd(sqrt(res))
}

Q.4 Choose K via minimal RMSE

RMSE SE k lower upper

0.2917121 0.0247127 24 0.2669995 0.3164248

Q.5 Choose K via the one-standard-error rule

RMSE SE k lower upper

0.3157639 0.0284855 70 0.2872784 0.3442495
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During the tuning process we inspect plots like the one on
the right.

Take-aways      Less is more:

we prefer simple over more complex

choose tuning parameters based on the numerically
optimal value OR

choose a simpler model that is within a certain
tolerance of the numerically best value

use the 'one-standard-error' rule.

With the selected tuning parameters, we refit the model on
the complete training set and use it to predict the test set
(under ).

Putting it all together
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Target and feature engineering:
data pre-processing steps
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Feature engineering:

applies pre-processing steps to predictor (features) variables

creates new input features from your existing ones (e.g. network
features derived from a social network in a fraud detection model).

Target engineering:

transforms the response variable (or target) to improve the
performance of a predictive model.

The goal is to make models more effective.

See Kuhn & Johnson (2019) on Feature Engineering and Selection: A
Practical Approach for Predictive Models for a detailed discussion.

What is feature engineering?
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Take-aways  : different models have different sensitivities to the type of target and feature values in the model.

Source: Kuhn & Johnson (2013) on Applied predictive modeling. 76 / 156
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Target engineering
We load the ames  data set from the {AmesHousing} package and apply a stratified split of the data into a training (70%) and
test (30%) set.

We stratify on the distribution of the target variable Sale_Price  using the strata  argument in rsample::initial_split .

ames <- AmesHousing::make_ames()
set.seed(123)  
split  <- rsample::initial_split(ames, prop = 0.7, 
                                       strata = "Sale_Price") 
ames_train  <- rsample::training(split)
ames_test   <- rsample::testing(split)

We check the distribution of Sale_Price  in both ames_train  and ames_test .

summary(ames_train$Sale_Price)
summary(ames_test$Sale_Price)

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   12789  129500  160000  180923  213500  755000
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   35000  129500  160000  180502  213500  745000
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

Your turn

Inference with linear models often assumes that the target is generated from a normal
distribution.

Q: let's examine whether the Sale_Price  target satisfies this assumption.

1. Plot a histogram of Sale_Price . Is normality a meaningful assumption?

2. Try some transformation functions such that the transformed target approaches a normal
distribution.
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Q.1 original target

summary(ames_train$Sale_Price)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   12789  129500  160000  180923  213500  755000

Q.2 log-transformed target

summary(log(ames_train$Sale_Price))
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   9.456  11.771  11.983  12.020  12.271  13.534
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Feature engineering steps
Examples of common pre-processing steps:

Some models (e.g. KNN, Lasso, neural networks) require that the predictor variables are on the same scale.
Centering (C) and scaling (S) the predictors can be used for this purpose.

Other models are very sensitive to correlations between the predictors and filters or PCA signal extraction can improve
these models.

Some models find (near) zero-variance (NZV) predictors problematic, and these should be removed before fitting the
model.

In other cases, the data should be encoded in a specific way to make sure all predictors are numeric (e.g. one-hot
encoding of factor variables in neural networks).

Many models cannot cope with missing data so imputation strategies might be necessary.

Development of new features that represent something important to the outcome.

(add your own example here!)

This list is inspired by Max Kuhn (2019) on Applied Machine Learning.
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draft a blueprint of the necessary pre-processing
steps, and their order

Boehme & Greenwell (2019) suggest

        1. Filter out zero or near-zero variance features.
        2. Perform imputation if required.
        3. Normalize to resolve numeric feature skewness.
        4. Standardize (center and scale) numeric features.
        5. Perform dimension reduction (e.g., PCA) on
            numeric features.
        6. One-hot or dummy encode categorical features.

avoid data leakage in the pre-processing steps when
applied to resampled data sets!

A blueprint for feature engineering

Take-aways  : a proper implementation
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We already detected the necessity of log-transforming
Sale_Price  when building linear models.

We add another pre-processing step, inspired by the high
cardinality feature Neighborhood .

ames_train %>% group_by(Neighborhood) %>% 
  summarize(n_obs = n()) %>% 
  arrange(n_obs) %>% slice(1:4)

Neighborhood n_obs

Landmark 1

Green_Hills 2

Greens 3

Blueste 8

Feature engineering with {recipes}
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We'll use recipe()  from the {recipes} package.

The main idea is to preprocess multiple datasets using a
single recipe() .

Before we start, keep the following fundamentals of
{recipes} in mind!

Creating a recipe  takes the following steps:

get the ingredients ( recipe() ): specify the response
and predictor variables

write the recipe ( step_zzz() ): define the pre-
processing steps, such as imputation, creating dummy
variables, scaling, and more

prepare the recipe ( prep() ): provide a dataset to base
each step on (e.g. calculate constants to do centering
and scaling)

bake the recipe ( bake() ): apply the pre-processing
steps to your datasets.

Feature engineering with {recipes}

Source: Rebecca Barter's blog
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Use recipe()  to create the preprocessing blueprint (to be
applied later)

library(recipes)
mod_rec <- recipe(Sale_Price ~ ., data = ames_train)
mod_rec

Now, mod_rec  knows the role of each variable ( predictor
or outcome ).

We can use selectors such as all_predictors() ,
all_outcomes()  or all_nominal() .

Extend mod_rec  with two pre-processing steps:

step_log(all_outcomes())

step_other(Neighborhood, threshold = 0.05)  to lump the
levels that occur in less than 5% of data as "other".

mod_rec <- mod_rec %>% step_log(all_outcomes()) %>%
           step_other(Neighborhood, threshold = 0.05)
mod_rec

Feature engineering with {recipes}
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Feature engineering with {recipes}

Now that we have a preprocessing specification, we run on it on the ames_train  to prepare (or prep() ) the recipe.

mod_rec_trained <- prep(mod_rec, training = ames_train, verbose = TRUE, retain = TRUE)

mod_rec_trained <- prep(mod_rec, training = ames_train, verbose = TRUE, retain = TRUE)
## oper 1 step log [training] 
## oper 2 step other [training] 
## The retained training set is ~ 0.82 Mb  in memory.

The retain = TRUE  indicates that the preprocessed training set should be saved.

Source Max Kuhn (2019) on Applied Machine Learning.
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Feature engineering with {recipes}
mod_rec_trained

Once the recipe is prepared, it can be applied to any data set using bake() . There is no need to bake()  the data used in the
prep()  step; you get the processed training set with juice() .

ames_test_prep <- bake(mod_rec_trained, new_data = ames_test)
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ames_test_prep %>% group_by(Neighborhood) %>% 
  summarize(n_obs = n()) %>% 
  arrange(n_obs)

Neighborhood n_obs

Sawyer 43

Northridge_Heights 50

Gilbert 54

Somerset 60

Edwards 63

College_Creek 68

Old_Town 75

North_Ames 137

other 331

juice(mod_rec_trained) %>% group_by(Neighborhood) %>% 
  summarize(n_obs = n()) %>% 
  arrange(n_obs)

Neighborhood n_obs

Sawyer 108

Gilbert 111

Northridge_Heights 116

Somerset 122

Edwards 131

Old_Town 164

College_Creek 199

North_Ames 306

other 792

Feature engineering with {recipes}
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

Your turn

Now you will extend the existing recipe in mod_rec , prepare and bake it again!

Q: consult the {recipes} manual and specify a recipe for the housing data that includes the
following pre-processing steps (in this order)

log-transform the outcome variable
remove any zero-variance predictors
lump factor levels that occur in <= 5% of data as "other" for both Neighborhood  as well as
House_Style

center and scale all numeric features.

1. Specify the above recipe on the training set and store it in the object mod_rec .
2. Inspect the object mod_rec  using summary(mod_rec) . What can you learn from this

summary?
3. Prepare the recipe on the training data and then apply it to the test set.
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First, let's try to get a grasp of the House_Style  feature as
well as the presence of zero-variance predictors.

ames_train %>% group_by(House_Style) %>% 
              summarize(n_obs = n()) %>% 
               arrange(n_obs)

House_Style n_obs

Two_and_Half_Fin 6

One_and_Half_Unf 15

Two_and_Half_Unf 17

SFoyer 61

SLvl 91

One_and_Half_Fin 214

Two_Story 609

One_Story 1036
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To detect the presence of zero-variance and near-zero-variance features the caret  library has the function nearZeroVar

library(caret)
nzv <- caret::nearZeroVar(ames_train, saveMetrics = TRUE)

names(ames_train)[nzv$zeroVar]

## character(0)

names(ames_train)[nzv$nzv]

##  [1] "Street"             "Alley"              "Land_Contour"      
##  [4] "Utilities"          "Land_Slope"         "Condition_2"       
##  [7] "Roof_Matl"          "Bsmt_Cond"          "BsmtFin_Type_2"    
## [10] "BsmtFin_SF_2"       "Heating"            "Low_Qual_Fin_SF"   
## [13] "Kitchen_AbvGr"      "Functional"         "Enclosed_Porch"    
## [16] "Three_season_porch" "Screen_Porch"       "Pool_Area"         
## [19] "Pool_QC"            "Misc_Feature"       "Misc_Val"

So, no features have zero- variance, but 20 features have near-zero-variance.
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We put the recipe together with the following steps

mod_rec <- recipe(Sale_Price ~ ., data = ames_train) %>
        step_log(all_outcomes()) %>%
        step_other(Neighborhood, threshold = 0.05) %>%
        step_other(House_Style, threshold = 0.05) %>%
        step_zv(all_predictors()) %>% 
        step_nzv(all_predictors()) %>%
        step_center(all_numeric(), -all_outcomes()) %>%
        step_scale(all_numeric(), -all_outcomes())
summary(mod_rec) %>% slice(1:6)

variable type role source

MS_SubClass
factor , unordered,
nominal

predictor original

MS_Zoning
factor , unordered,
nominal

predictor original

Lot_Frontage double , numeric predictor original

Lot_Area integer, numeric predictor original

Street
factor , unordered,

i l
predictor original

mod_rec
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We prep the recipe on ames_train

mod_rec_trained <- prep(mod_rec, 
                        training = ames_train, 
                        verbose = TRUE, retain = TRUE)
## oper 1 step log [training] 
## oper 2 step other [training] 
## oper 3 step other [training] 
## oper 4 step zv [training] 
## oper 5 step nzv [training] 
## oper 6 step center [training] 
## oper 7 step scale [training] 
## The retained training set is ~ 0.75 Mb  in memory.

and bake it on the ames_test  data

ames_test_prep <- bake(mod_rec_trained, 
                                new_data = ames_test)

We inspect the processed training and test set

dim(juice(mod_rec_trained))

## [1] 2049   60

Verify that Sale_Price  is log-transformed (but not centred
and scaled)

head(juice(mod_rec_trained)$Sale_Price) 
head(ames_train$Sale_Price)
head(ames_test_prep$Sale_Price)
head(ames_test$Sale_Price)

## [1] 11.57 11.39 11.70 11.74 11.12 11.63

## [1] 105500  88000 120000 125000  67500 112000

## [1] 11.56 12.15 12.18 12.16 12.37 12.15

## [1] 105000 189900 195500 191500 236500 189000

levels(juice(mod_rec_trained)$House_Style)

levels(ames_test_prep$House_Style)

## [1] "One_and_Half_Fin" "One_Story"
## [1] "Two_Story" "other" 92 / 156



# get the simulated data
set.seed(123)  # for reproducibility
x <- seq(from = 0, to = 2 * pi, length = 500)
y <- sin(x) + rnorm(length(x), sd = 0.3)
df <- data.frame(x, y) %>% filter(x < 4.5)

# specify the recipe
library(recipes)
rec <- recipe(y ~ x, data = df)
rec <- rec %>% step_center(all_predictors()) %>%
               step_scale(all_predictors())

# doing this on complete data set df
rec_df <- prep(rec, training = df)
mean(juice(rec_df)$x) # centered!
## [1] 1.473e-16
sd(juice(rec_df)$x)   # scaled!
## [1] 1

# now we combine the recipe with rsample steps
library(rsample)
set.seed(123)  # for reproducibility
cv_rsample <- vfold_cv(df, 5)

# we apply the steps in the recipe to each fold
library(purrr)
cv_rsample$recipes <- map(cv_rsample$splits, prepper, 
                          recipe = rec)
# check ?prepper

Putting it all together {rsample} and {recipes}
Let's redo the KNN example, with centering and scaling of the x-feature, by combining {rsample}/{caret} with a recipe.
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Now you can inspect cv_rsample  as follows

cv_rsample$recipes[[1]]
juice(cv_rsample$recipes[[1]])
bake(cv_rsample$recipes[[1]], 
     new_data = assessment(cv_rsample$splits[[1]]))

holdout_results <- function(s, rec, k_val) {
  # Fit the model to the analysis data in split s
  df_train <- juice(rec)
  mod <- knnreg(y ~ x, k = k_val, data = df_train)
  # Get the remaining group
  holdout <- bake(rec, new_data = assessment(s))
  # Get predictions with the holdout data set
  res <- predict(mod, newdata = holdout)
  # Return observed and predicted values 
  #                            on holdout set
  res <- tibble(obs = holdout$y, pred = res)
  res
}

res <- holdout_results(cv_rsample$splits[[2]], 
                       cv_rsample$recipes[[2]], 
                       k_val = 58)
sqrt(sum((res$obs - res$pred)^2)/nrow(res))
## [1] 0.3505

Putting it all together {rsample} and {recipes}
Let's redo the KNN example, with centering and scaling of the x-feature, by combining {rsample}/{caret} with a recipe.
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Putting it all together {rsample} and {recipes}
Let's redo the KNN example, with centering and scaling of the x-feature, by combining {rsample}/{caret} with a recipe.

RMSE <- numeric(nrow(hyper_grid))
SE <- numeric(nrow(hyper_grid))
for(i in 1:nrow(hyper_grid)){
  cv_rsample$results <- map2(cv_rsample$splits, cv_rsample$recipes,
                            holdout_results,
                            hyper_grid[i, ])
  res <- map_dbl(cv_rsample$results, 
                 function(x) mean((x$obs - x$pred)^2))
  RMSE[i] <- mean(sqrt(res)) ; SE[i] <- sd(sqrt(res))
}
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Regression models in R and
tidy model output with {broom}
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Creating models in R
The formula interface using R's formula rules to specify a symbolic representation of the terms:

response ~ variable, with model_fn  referring to the specific model function you want to use, e.g. lm  for linear regression

model_fn(Sale_Price ~ Gr_Liv_Area, data = ames)

response ~ variable_1 + variable_2

model_fn(Sale_Price ~ Gr_Liv_Area + Neighborhood, data = ames)

response ~ variable_1 + variable_2 + their interaction

model_fn(Sale_Price ~ Gr_Liv_Area + Neighborhood + Neighborhood:Gr_Liv_Area, data = ames)

shorthand for all predictors

model_fn(Sale_Price ~ ., data = ames)
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

Your turn

You will now fit some linear regression models on the ames  housing data.

You will explore the model fits with base  R instructions as well as the functionalities offered
by the {broom} package.

Q: load the ames  housing data set via ames <- AmesHousing::make_ames()

1. Fit a linear regression model with Sale_Price  as response and Gr_Liv_Area  as covariate.
Store the resulting object as model_1 .

2. Repeat your instruction, but now put it between brackets. What happens?

3. Inspect model_1  with the following set of instructions

summary(___)

extract the fitted coefficients, using ___$coefficients
what happens with summary(___)$coefficients ?
extract fitted values, using ___$fitted.values
now try to extract the R2 of this model.
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model_1$coefficients

## (Intercept) Gr_Liv_Area 
##     13289.6       111.7

summary(model_1)$coefficients

##             Estimate Std. Error t value  Pr(>|t|)
## (Intercept)  13289.6   3269.703   4.064 4.941e-05
## Gr_Liv_Area    111.7      2.066  54.061 0.000e+00

head(model_1$fitted.values)

##      1      2      3      4      5      6 
## 198255 113367 161731 248964 195239 192447

summary(model_1)$r.squared

## [1] 0.4995

Q.1 Linear model with Sale_Price  as a function of Gr_Live_Area

model_1 <- lm(Sale_Price ~ Gr_Liv_Area, data = ames)

Q.3 Check model_1  - What happens - do you like this display?

summary(model_1)

Now let's extract some meaningful information from model_1  (using base  R instructions)
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Tidy model output
The package {broom} allows to summarize key information about statistical objects (e.g. a linear regression model) in so-
called tidy tibbles.

This makes it easy to report results, create plots and consistently work with large numbers of models at once.

We briefly illustrate the three essential verbs of {broom}: tidy() , glance()  and augment() .

model_1 %>% broom::tidy()

term estimate std.error statistic p.value

(Intercept) 13289.6 3269.703 4.064 0

Gr_Liv_Area 111.7 2.066 54.061 0

model_1 %>% broom::glance()

r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs

0.4995 0.4994 56524 2923 0 1 -36218 72442 72460 9.355e+12 2928 2930
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Tidy model output
The package {broom} allows to summarize key information about statistical objects (e.g. a linear regression model) in so-
called tidy tibbles.

This makes it easy to report results, create plots and consistently work with large numbers of models at once.

We briefly illustrate the three essential verbs of broom : tidy() , glance()  and augment() .

model_1 %>% broom::augment() %>% slice(1:5)

Sale_Price Gr_Liv_Area .fitted .resid .hat .sigma .cooksd .std.resid

215000 1656 198255 16745 4e-04 56533 0 0.2963

105000 896 113367 -8367 8e-04 56534 0 -0.1481

172000 1329 161731 10269 4e-04 56534 0 0.1817

244000 2110 248964 -4964 8e-04 56534 0 -0.0879

189900 1629 195239 -5339 4e-04 56534 0 -0.0945
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g_lm_1 <- ggplot(data = ames, 
                 aes(Gr_Liv_Area, Sale_Price)) + 
  theme_bw() +
  geom_point(size = 1, alpha = 0.3) +
  geom_smooth(se = TRUE, method = "lm") +
  #scale_y_continuous(labels = scales::dollar) +
  ggtitle("Regression with AMES housing data")
g_lm_1

g_lm_2 <- model_1 %>% broom::augment() %>% 
ggplot(aes(Gr_Liv_Area, Sale_Price)) + 
    theme_bw() +
    geom_point(size = 1, alpha = 0.3) +
    geom_line(aes(y = .fitted), col = KULbg) +
    #scale_y_continuous(labels = scales::dollar) +
    ggtitle("Regression with AMES housing data")
g_lm_2
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Generalized Linear Models
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With linear regression models lm(.)

model specification

 is normally distributed with mean 0 and common variance ,
thus:  is normal with mean  and variance 

With generalized linear regression models glm(.)

model specification

 is the link function

 follows a distribution from the exponential family.

Linear and Generalized Linear Models

Y = x
′

β + ϵ.

ϵ σ2

Y x
′
β σ2

g(E[Y ]) = x
′

β.

g(. )

Y
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Motor Third Party Liability data
We will use the Motor Third Party Liability data set. There are 163,231 policyholders in this data set.

The frequency of claiming ( nclaims ) and corresponding severity ( avg , the amount paid on average per claim reported by a
policyholder) are the target variables in this data set.

Predictor variables are:

the exposure-to-risk, the duration of the insurance coverage (max. 1 year)
factor variables, e.g. gender, coverage, fuel
continuous, numeric variables, e.g. age of the policyholder, age of the car
spatial information: postal code (in Belgium) of the municipality where the policyholder resides.

More details in Henckaerts et al. (2018, Scandinavian Actuarial Journal) and Henckaerts et al. (2020, North American Actuarial
Journal).

105 / 156

https://katrienantonio.github.io/projects/2019/06/13/machine-learning/#data-driven
https://katrienantonio.github.io/projects/2019/06/13/machine-learning/#tree-based-pricing
https://katrienantonio.github.io/projects/2019/06/13/machine-learning/#tree-based-pricing


Motor Third Party Liability data
You can load the data from the data  folder as follows:

# install.packages("rstudioapi")
dir <- dirname(rstudioapi::getActiveDocumentContext()$path)
setwd(dir)
mtpl_orig <- read.table('../data/PC_data.txt',
                        header = TRUE, 
                        stringsAsFactors = TRUE)
mtpl_orig <- as_tibble(mtpl_orig)

Alternatively, you can also go for:

# install.packages("here")
dir <- here::here()   
setwd(dir) 
mtpl_orig <- read.table('../data/PC_data.txt', 
                        header = TRUE,
                        stringsAsFactors = TRUE)
mtpl_orig <- as_tibble(mtpl_orig)

Some basic exploratory steps with this data follow on the next sheet.
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Motor Third Party Liability data
Note that the data mtpl_orig  uses capitals for the variable names

mtpl_orig %>% slice(1:3) %>% dplyr::select(-LONG, -LAT)

ID NCLAIMS AMOUNT AVG EXP COVERAGE FUEL USE FLEET SEX AGEPH BM AGEC POWER PC TOWN

1 1 1618 1618 1 TPL gasoline private N male 50 5 12 77 1000 BRUSSEL

2 0 0 NA 1 PO gasoline private N female 64 5 3 66 1000 BRUSSEL

3 0 0 NA 1 TPL diesel private N male 60 0 10 70 1000 BRUSSEL

We change this to lower case variables, and rename exp  to expo .

mtpl <- mtpl_orig %>% rename_all(tolower) %>% rename(expo = exp)
names(mtpl)
##  [1] "id"       "nclaims"  "amount"   "avg"      "expo"     "coverage"
##  [7] "fuel"     "use"      "fleet"    "sex"      "ageph"    "bm"      
## [13] "agec"     "power"    "pc"       "town"     "long"     "lat"
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dim(mtpl)

## [1] 163231     18

mtpl %>% 
  summarize(emp_freq = sum(nclaims) / sum(expo))

emp_freq

0.1393

mtpl %>% 
  group_by(sex) %>% 
  summarize(emp_freq = sum(nclaims) / sum(expo))

sex emp_freq

female 0.1484

male 0.1361

g <- ggplot(mtpl, aes(nclaims)) + theme_bw() + 
     geom_bar(aes(weight = expo),
              alpha = .5, col = KULbg, fill = KULbg) + 
     labs(y = "Abs freq (in exposure)") +
     ggtitle("MTPL - number of claims")
g
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

Your turn

To get warmed up, let's load the mtpl  data and do some basic investigations into the
variables. The idea is to get a feel for the data.

Q: you will work through the following exploratory steps.

1. Visualize the distribution of the ageph  with a histogram.

2. For each age recorded in the data set mtpl : what is the total number of observations, the
total exposure, and the corresponding total number of claims reported?

3. Calculate the empirical claim frequency, per unit of exposure, for each age and picture it.
Discuss this figure.

4. Repeat the above for bm , the level occupied by the policyholder in the Belgian bonus-
malus scale.
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Q.1 a histogram of ageph

ggplot(data = mtpl, aes(ageph)) + theme_bw() +
  geom_histogram(binwidth = 2, alpha = .5,
                 col = KULbg, fill = KULbg) +
  labs(y = "Absolute frequency") +
  ggtitle("MTPL - age policyholder")

Q.2 for each ageph  recorded

mtpl %>% 
  group_by(ageph) %>% 
  summarize(tot_claims = sum(nclaims),
            tot_expo = sum(expo),
            tot_obs = n())

ageph tot_claims tot_expo tot_obs

18 5 4.622 16

19 28 93.022 116

20 113 342.285 393

21 165 597.389 701

22 202 778.827 952

23 297 1165.359 1379

24 426 1752.249 2028
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Q.3 for each ageph  recorded

freq_by_age <- mtpl %>% 
  group_by(ageph) %>% 
  summarize(emp_freq = sum(nclaims) / sum(expo))

ggplot(data = freq_by_age,
       aes(x = ageph, y = emp_freq)) + theme_bw() +
  geom_bar(stat = 'identity', alpha = .5,
           color = KULbg, fill = KULbg) +
  ggtitle('MTPL - empirical claim freq per 
          age policyholder')

Q.4 recycle the above instructions and replace ageph  with
bm
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Target variable nclaims  (frequency)

Suitable distributions: Poisson, Negative Binomial.

... and avg  (severity).

Suitable distributions: log-normal, gamma.

Generalized Linear Models (GLMs)
Modeling claim frequency and severity in the mtpl  data set.
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freq_glm_1 <- glm(nclaims ~ sex, offset = log(expo), 
                  family = poisson(link = "log"), 
                  data = mtpl)

Fit a Poisson GLM, with logarithmic link function.

This implies:

 ~ Poisson, with

or,

Fit this model on data = mtpl .

A Poisson GLM

Y

log(E[Y ]) = x
′

β,

E[Y ] = exp (x
′

β).
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freq_glm_1 <- glm(nclaims ~ sex, offset = log(expo), 
                  family = poisson(link = "log"), 
                  data = mtpl)

Use nclaims  as .

Use gender  as the only (factor) variable in the linear
predictor.

Include log(expo)  as an offset term in the linear predictor.

Then,

Put otherwise,

where  refers to expo  the exposure variable.

A Poisson GLM (cont.)

Y

x
′

β = log (expo) + β0 + β1I(male).

E[Y ] = expo ⋅ exp (β0 + β1I(male)) ,

expo
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freq_glm_1 <- glm(nclaims ~ sex, offset = log(expo), 
                  family = poisson(link = "log"), 
                  data = mtpl)

freq_glm_1 %>% broom::tidy()

term estimate std.error statistic p.value

(Intercept) -1.9076 0.0133 -143.186 0

sexmale -0.0866 0.0157 -5.523 0

Mind the specification of type.predict  when using
augment  with a GLM!

freq_glm_1 %>% broom::augment(type.predict = "response"

nclaims sex .fitted

1 male 0.1361

0 female 0.1484

The predict  function of a GLM object offers 3 options:
"link" , "response"  or "terms" .

The same options hold when augment()  is applied to a
GLM object.

Let's see how the fitted values at "response"  level are
constructed:

exp(coef(freq_glm_1)[1])
## (Intercept) 
##      0.1484
exp(coef(freq_glm_1)[1] + coef(freq_glm_1)[2])
## (Intercept) 
##      0.1361

Do you recognize these numbers?

Last step:

try freq_glm_1 %>% glance()  or summary(freq_glm_1)  for
deviances.
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

Your turn

You will further explore GLMs in R with the glm(.)  function.

Q: continue with the freq_glm_1  object that was created, you will now explicitly call the
predict()  function on this object.

1. Verify the arguments of predict.glm  using ? predict.glm .

2. The help reveals the following structure predict(.object, .newdata, type = ("..."))
where .object  is the fitted GLM object, .newdata  is (optionally) a data frame to look for
the features used in the model, and type  is "link" , "response"  or "terms" .
Use predict  with freq_glm_1  and a newly created data frame.
Explore the different options for type , and their connections.

3. Fit a gamma GLM for avg  (the claim severity) with log link.
Use sex  as the only variable in the model. What do you conclude?
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Q.1 You can access the documentation via ? predict.glm .

Q.2 You create new data frames (or tibbles) as follows

male_driver <- data.frame(expo = 1, sex = "male")
female_driver <- data.frame(expo = 1, sex = "female")

Next, you apply predict  with the GLM object freq_glm_1
and one of these data frames, e.g.

predict(freq_glm_1, newdata = male_driver, 
                    type = "response")

##         1 
## 0.1361164

Q.2 Next, you apply predict  with the GLM object
freq_glm_1  and one of these data frames, e.g.

predict(freq_glm_1, newdata = male_driver, 
                    type = "response")

##         1 
## 0.1361164

At the level of the linear predictor:

predict(freq_glm_1, newdata = male_driver, 
                    type = "link")

##         1 
## -1.994245

exp(predict(freq_glm_1, newdata = male_driver, 
                        type = "link"))

##         1 
## 0.1361164
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Q.3 For the gamma regression model

sev_glm_1 <- glm(avg ~ sex, family = Gamma(link = "log"), data = mtpl)
sev_glm_1

## 
## Call:  glm(formula = avg ~ sex, family = Gamma(link = "log"), data = mtpl)
## 
## Coefficients:
## (Intercept)      sexmale  
##      7.5730      -0.2581  
## 
## Degrees of Freedom: 18294 Total (i.e. Null);  18293 Residual
##   (144936 observations deleted due to missingness)
## Null Deviance:        46690 
## Residual Deviance: 46440     AIC: 299700
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Generalized Additive Models with {mgcv}

119 / 156



With GLMs glm(.)

transformation of the mean modelled with a linear predictor

not well suited for continuous risk factors that relate to the
response in a non-linear way.

With Generalized Additive Models (GAMs)

the predictor allows for smooth effects of continuous risk factors
and spatial covariates, next to the linear terms, e.g.

predictor is still additive

preferred R package is {mgcv} by Simon Wood.

Generalized Additive Models (GAMs)

x
′

β

x
′

β + ∑
j

fj(xj) + f(lat, long)
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We continue working with mtpl  and now focus on ageph . We will now explore four different model specifications:

1. ageph  as linear effect in glm

2. ageph  as factor variable in glm

3. ageph  split manually into bins using cut , then used
as factor in glm

4. a smooth effect of ageph  in mgcv::gam .

Let's go!

Grid of observed ageph  values

a <- min(mtpl$ageph):max(mtpl$ageph)

A Poisson GAM

121 / 156



Model 1: linear effect of ageph

freq_glm_age <- glm(nclaims ~ ageph, 
                    offset = log(expo), 
                    data = mtpl, 
                    family = poisson(link = "log"))
pred_glm_age <- predict(freq_glm_age, 
          newdata = data.frame(ageph = a, expo = 1), 
          type = "terms", se.fit = TRUE)
b_glm_age <- pred_glm_age$fit
l_glm_age <- pred_glm_age$fit 
                  - qnorm(0.975)*pred_glm_age$se.fit
u_glm_age <- pred_glm_age$fit 
                  + qnorm(0.975)*pred_glm_age$se.fit
df <- data.frame(a, b_glm_age, l_glm_age, u_glm_age)
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Model 2: ageph  as factor variable in glm

freq_glm_age_f <- glm(nclaims ~ as.factor(ageph), 
                    offset = log(expo), 
                    data = mtpl, 
                    family = poisson(link = "log"))
pred_glm_age_f <- predict(freq_glm_age_f, 
          newdata = data.frame(ageph = a, expo = 1), 
          type = "terms", se.fit = TRUE)
b_glm_age_f <- pred_glm_age_f$fit
l_glm_age_f <- pred_glm_age_f$fit 
                  - qnorm(0.975)*pred_glm_age_f$se.fit
u_glm_age_f <- pred_glm_age_f$fit 
                  + qnorm(0.975)*pred_glm_age_f$se.fit
df <- data.frame(a, b_glm_age_f, 
                    l_glm_age_f, u_glm_age_f)
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Model 3: ageph  split into 5-year bins and then used in glm

level <- seq(min(mtpl$ageph), max(mtpl$ageph), by = 5)
freq_glm_age_c <- glm(nclaims ~ cut(ageph, level), 
                    offset = log(expo), 
                    data = mtpl, 
                    family = poisson(link = "log"))
pred_glm_age_c <- predict(freq_glm_age_c, 
          newdata = data.frame(ageph = a, expo = 1), 
          type = "terms", se.fit = TRUE)
b_glm_age_c <- pred_glm_age_c$fit
l_glm_age_c <- pred_glm_age_c$fit 
                  - qnorm(0.975)*pred_glm_age_c$se.fit
u_glm_age_c <- pred_glm_age_c$fit 
                  + qnorm(0.975)*pred_glm_age_c$se.fit
df <- data.frame(a, b_glm_age_c, 
                    l_glm_age_c, u_glm_age_c)
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Model 4: smooth effect of ageph  in mgcv::gam

library(mgcv)
freq_gam_age <- gam(nclaims ~ s(ageph), 
                    offset = log(expo), 
                    data = mtpl, 
                    family = poisson(link = "log"))
pred_gam_age <- predict(freq_gam_age, 
          newdata = data.frame(ageph = a, expo = 1), 
          type = "terms", se.fit = TRUE)
b_gam_age <- pred_gam_age$fit
l_gam_age <- pred_gam_age$fit -
                  qnorm(0.975)*pred_gam_age$se.fit
u_gam_age <- pred_gam_age$fit +
                  qnorm(0.975)*pred_gam_age$se.fit
df <- data.frame(a, b_gam_age, 
                    l_gam_age, u_gam_age)
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Model 4 (revisited): picture smooth effect of ageph  in mgcv::gam  with built-in plot .

library(mgcv)
freq_gam <- gam(nclaims ~ s(ageph), offset = log(expo), family = poisson(link = "log"), data = mtpl)
plot(freq_gam, scheme = 4)
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So, a GAM is a GLM where the linear predictor depends on
smooth functions of covariates.

Consider a GAM with the following predictor:

GAMs use basis functions to estimate the smooth effect

where the  are known basis functions and  are
coefficients that have to be estimated.

GAMs avoid overfitting by adding a wiggliness penalty to
the likelihood

GAMs then balance goodness-of-fit and wiggliness via

with  the smoothing parameter.

The smoothing parameter  controls the trade-off
between fit & smoothness.

More on GAMs

x
′

β + fj(xj).

fj(. )

fj(xj) =
M

∑
m=1

βjmbjm(xj),

bjm(x) βjm

∫ (fj(x)′′)
2

= βt
jSjβj.

− logL(β, βj) + λj ⋅ βt
jSjβj,

λj

λj
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Let's run some experiments to illustrate the effect of the smoothing parameter ( sp = . ), the number ( k = . ) and type of
basis functions ( bs = . ). We use the mcycle  data from {MASS}.
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

Your turn

You will further explore GAMs in R with the gam(.)  function from the {mgcv} package.

Q: you will combine insights from building glm  as well as gam  objects by working through the
following coding steps.

1. Fit a gam  including some factor variables as well as a smooth effect of ageph  and bm .
Visualize the fitted smooth effects.

2. Specify risk profiles of drivers. Calculate their expected annual claim frequency from the
constructed gam .

3. Explain (in words) which profiles would represent high vs low risk according to the
constructed model.

129 / 156



Q.1 examine the following gam  fit

freq_gam_2 <- gam(nclaims ~ sex + fuel + use + 
                    s(ageph) + s(bm),
                  offset = log(expo), data = mtpl,
                  family = poisson(link = "log"))

summary(freq_gam_2)
## 
## Family: poisson 
## Link function: log 
## 
## Formula:
## nclaims ~ sex + fuel + use + s(ageph) + s(bm)
## 
## Parametric coefficients:
##               Estimate Std. Error  z value Pr(>|z|) 
## (Intercept)  -1.917790   0.018124 -105.817   <2e-16 
## sexmale       0.009167   0.016043    0.571   0.5677 
## fuelgasoline -0.152730   0.015100  -10.114   <2e-16 
## usework      -0.055345   0.033090   -1.673   0.0944 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.
## 
## Approximate significance of smooth terms:
##            edf Ref.df Chi.sq p-value    

plot(freq_gam_2, select = 1)

plot(freq_gam_2, select = 2)
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Q.2 define some risk profiles

drivers <- data.frame(expo = c(1, 1, 1), 
                      sex = c("female", "female", "fema
                      fuel = c("diesel", "diesel", "die
                      use = c("private", "private", "pr
                      ageph = c(18, 45, 65), bm = c(20,
drivers

expo sex fuel use ageph bm

1 female diesel private 18 20

1 female diesel private 45 5

1 female diesel private 65 0

Now, you predict the annual expected claim frequency for
these profiles.

predict(freq_gam_2, newdata = drivers, 
        type = "response")

x

0.4031766

0.1727503

0.0951317
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Regularized (G)LMs met {glmnet}
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Why?

Sort through the mass of information and bring it down to its bare
essentials.

One form of simplicity is sparsity.

Only a relatively small number of predictors play a role.

How?     Automatic feature selection!

Fit a model with all p predictors, but constrain or regularize the
coefficient estimates.

Shrinking the coeffcient estimates can signifcantly reduce their
variance.

Some types of shrinkage put some of the coefficients exactly
equal to zero!

Statistical learning with sparsity
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Ridge considers the least-squares optimization problem

subject to a budget constraint

i.e. an  penalty.

Shrinks the coefficient estimates (not the intercept) to zero.

Lasso considers the least-squares optimization problem

subject to a budget constraint

i.e. an  penalty.

Shrinks the coefficient estimates (not the intercept) to zero
and does variable selection!

Lasso is for Least absolute shrinkage and selection
operator.

Ridge and lasso (least squares) regression

min
β0,β

 
n

∑
i=1

(yi − β0 −
p

∑
j=1

βjxij)
2

= min
β0,β

 RSS

p

∑
j=1

β2
j ≤ t,

ℓ2

min
β0,β

 
n

∑
i=1

(yi − β0 −
p

∑
j=1

βjxij)
2

= min
β0,β

 RSS

p

∑
j=1

|βj| ≤ t,

ℓ1
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The dual problem formulation:

with ridge penalty:

with lasso penalty:

 is a tuning parameter; use resampling methods to pick a
value!

Both ridge and lasso require centering and scaling of the
features.

Ellipses (around least-squares solution) represent regions
of constant RSS.

Lasso budget on the left and ridge budget on the right.

Source: James et al. (2021) on An introduction to statistical
learning.

Ridge and lasso (least squares) regression (cont.)

min
β0,β

 RSS + λ

p

∑
j=1

β2
j

min
β0,β

 RSS + λ

p

∑
j=1

|βj|.

λ
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We now focus on generalizations of linear models and the
lasso.

Minimize

Here:

 is the log-likelihood of a GLM.

 is the sample size

 the  penalty.

What happens if:

?

?

The R package {glmnet} fits linear, logistic and multinomial,
Poisson, and Cox regression models.

Regularized GLMs

min
β0, β

− logL(β0,  β;  y,  X) + λ∥β∥1.
1

n

logL

n

∥β∥1 = ∑p
j=1 βj ℓ1

λ → 0
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Fit a GLM with lasso regularization in {glmnet}
{glmnet} is a package that fits a generalized linear model via penalized maximum likelihood.

Main function call (with a selection of arguments, see ? glmnet  for a complete list)

fit <- glmnet(x, y, family = ., alpha = ., weights = ., offset = ., nlambda = ., standardize = ., intercept = .)

where

x  is the input matrix and y  is the response variable
family  the response type, e.g. family = poisson
weights  and offset
nlambda  is the number of  values, default is 100
standardize  should x  be standardized prior to fitting the model sequence?
intercept  should incercept be fitted?
alpha  a value between 0 and 1, such that the penalty becomes

Thus, with  the lasso penalty and  the ridge penalty results.
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Following the vignette we start with penalized linear
regression

library(glmnet)
data(QuickStartExample)

This example loads an input matrix x  and vector y  of
outcomes. The input matrix x  is not standardized yet
(check this!).

We calibrate a lasso linear regression model

fit <- glmnet(x, y, family = "gaussian", 
              alpha = 1, standardize = TRUE, 
              intercept = TRUE)
summary(fit)

Note that the formula notation y ~ x  can not be used with
glmnet .

Some tidy  instructions are available for glmnet  objects
(but not all), e.g.

library(broom)
tidy(fit)

term step estimate lambda dev.ratio

(Intercept) 1 0.6607581 1.630762 0.0000000

(Intercept) 2 0.6312350 1.485890 0.0552832

(Intercept) 3 0.5874616 1.353887 0.1458910

(Intercept) 4 0.5475769 1.233612 0.2211153

(Intercept) 5 0.5112354 1.124021 0.2835678

A first example of {glmnet}
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plot(fit, label = TRUE) plot(fit, label = TRUE, xvar = 'lambda')
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plot(fit, xvar = 'dev', label = TRUE) print(fit) 
## 
## Call:  glmnet(x = QuickStartExample$x, y = QuickStar
## 
##    Df  %Dev  Lambda
## 1   0  0.00 1.63100
## 2   2  5.53 1.48600
## 3   2 14.59 1.35400
## 4   2 22.11 1.23400
## 5   2 28.36 1.12400
## 6   2 33.54 1.02400
## 7   4 39.04 0.93320
## 8   5 45.60 0.85030
## 9   5 51.54 0.77470
## 10  6 57.35 0.70590
## 11  6 62.55 0.64320
## 12  6 66.87 0.58610
## 13  6 70.46 0.53400
## 14  6 73.44 0.48660
## 15  7 76.21 0.44330
## 16  7 78.57 0.40400
## 17  7 80.53 0.36810
## 18  7 82.15 0.33540
## 19  7 83.50 0.30560
## 20  7 84.62 0.27840
## 21  7 85.55 0.25370
# 22 7 86 33 0 23120
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Get estimated coefficients for handpicked value

coef(fit, s = 0.1)

## 21 x 1 sparse Matrix of class "dgCMatrix"
##                       s1
## (Intercept)  0.150928072
## V1           1.320597195
## V2           .          
## V3           0.675110234
## V4           .          
## V5          -0.817411518
## V6           0.521436671
## V7           0.004829335
## V8           0.319415917
## V9           .          
## V10          .          
## V11          0.142498519
## V12          .          
## V13          .          
## V14         -1.059978702
## V15          .          
## V16          .          
## V17          .          
## V18          .          
## V19          .          

glmnet  returns a sequence of models for the users to
choose from, i.e. a model for every lambda .

How do we select the most appropriate model?

Use cross-validation to pick a lambda  value. The default is
10-folds cross-validation.

cv_fit <- cv.glmnet(QuickStartExample$x, QuickStartExam

We can pick the lambda  that minimizes the cross-
validation error.

cv_fit$lambda.min
## [1] 0.07569327

Or we use the one-standard-error-rule.

cv_fit$lambda.1se
## [1] 0.1593271
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We plot the cross-validation error for the inspected grid of lambda  values.

plot(cv_fit)
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For the selected lambda  (via cv_fit$lambda.min ) we
inspect which parameters are non-zero (on the right).

Now, compare this to the selected variables obtained via
cv_fit$lambda.1se .

coef(fit, s = cv_fit$lambda.min)

## 21 x 1 sparse Matrix of class "dgCMatrix"
##                      s1
## (Intercept)  0.14867414
## V1           1.33377821
## V2           .         
## V3           0.69787701
## V4           .         
## V5          -0.83726751
## V6           0.54334327
## V7           0.02668633
## V8           0.33741131
## V9           .         
## V10          .         
## V11          0.17105029
## V12          .         
## V13          .         
## V14         -1.07552680
## V15          .         
## V16          .         
## V17          .         
## V18          .         
## V19          .         
## V20         -1.05278699 143 / 156



The variables V1 , V3 , V5-8 , V11 , V14  and V20  are
selected in the regression model.

However, the corresponding estimates (on the left) are
biased, and shrunk to zero.

To remove this bias, we refit the model, only using the
selected variables.

attach(QuickStartExample)
subset <- data.frame(y = y, V1 = x[, 1], V3 = x[, 3], 
                     V5 = x[, 5], V6 = x[, 6], 
                     V7 = x[, 7], V8 = x[, 8], 
                     V11 = x[, 11], V14 = x[, 14], 
                     V20 = x[, 20])
final_model <- lm(y ~ V1 + V3 + V5 + V6 + V7 + V8 + 
                      V11 + V14 + V20, data = subset)
final_model %>% broom::tidy()

What is your judgement about V7  (see coefficients on the
right)?

What do you observe when comparing the estimates below
with those shown on the previous sheet?

term estimate std.error statistic p.value

(Intercept) 0.1416891 0.0995658 1.4230704 0.1581730

V1 1.3746695 0.0968211 14.1980421 0.0000000

V3 0.7688247 0.0942568 8.1567012 0.0000000

V5 -0.8991610 0.1033747 -8.6980793 0.0000000

V6 0.6115910 0.0900882 6.7888025 0.0000000

V7 0.0947279 0.0972959 0.9736059 0.3328618

V8 0.3933822 0.0920456 4.2737767 0.0000477

V11 0.2600734 0.0994215 2.6158659 0.0104367

V14 -1.1239616 0.0885267 -12.6963039 0.0000000

V20 -1.1491267 0.1117142 -10.2863111 0.0000000
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Next, we fit a Poisson regression model with lasso
penalty on the mtpl  data set.

The regularization penalty helps us to select the interesting
features from the data set.

glmnet  requires the features as input matrix x  and the
target as a vector y .

Recall:

mtpl  has continuous features (e.g. ageph , bm , power )

mtpl  has factor variables with two levels (e.g. sex ,
fleet )

but also factor variables with more than 2 levels
( coverage )

Consider different types of coding factor variables.

Apply the contrasts  function to the variable coverage

map(mtpl[, c("coverage")], contrasts, 
    contrasts = FALSE)
## $coverage
##     FO PO TPL
## FO   1  0   0
## PO   0  1   0
## TPL  0  0   1

map(mtpl[, c("coverage")], contrasts, 
    contrasts = TRUE)
## $coverage
##     PO TPL
## FO   0   0
## PO   1   0
## TPL  0   1

What's the difference?

{glmnet} and the MTPL data set
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{glmnet} and the MTPL data set (cont.)
We construct the input matrix for glmnet .

y <- mtpl$nclaims

x <- model.matrix( ~ coverage + fuel + use + fleet + sex + ageph + bm +
                     agec + power, data = mtpl, 
                   contrasts.arg = map(mtpl[, c("coverage")], contrasts, 
                                       contrasts = FALSE))[,-1]

x[1:10,]

Put the response or outcome variable in y .

In the mtpl  data set we build a Poisson model for nclaims .
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{glmnet} and the MTPL data set (cont.)
We construct the input matrix for glmnet .

y <- mtpl$nclaims

x <- model.matrix( ~ coverage + fuel + use + fleet + sex + ageph + bm +
                     agec + power, data = mtpl, 
                     contrasts.arg = map(mtpl[, c("coverage")], contrasts, 
                                      contrasts = FALSE))[,-1]

Use model.matrix  to create the input matrix x .

We code the factor variable coverage  with one-hot-encoding. Here, three dummy variables will be created for the three levels
of coverage .

The other factor variables fuel , use , fleet , sex  are dummy coded, with one dummy variable.
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{glmnet} and the MTPL data set (cont.)
We construct the input matrix for glmnet .

y <- mtpl$nclaims

x <- model.matrix( ~ coverage + fuel + use + fleet + sex + ageph + bm +
                     agec + power, data = mtpl, 
                     contrasts.arg = map(mtpl[, c("coverage")], contrasts, 
                                       contrasts = FALSE))[,-1]

Use model.matrix  to create the input matrix x .

We remove the first column, representing the intercept, from the model.matrix .
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{glmnet} and the MTPL data set (cont.)
Let's check the input matrix x

##   coverageFO coveragePO coverageTPL fuelgasoline usework fleetY sexmale ageph
## 1          0          0           1            1       0      0       1    50
## 2          0          1           0            1       0      0       0    64
## 3          0          0           1            0       0      0       1    60
## 4          0          0           1            1       0      0       1    77
## 5          0          0           1            1       0      0       0    28
## 6          0          0           1            1       0      0       1    26
##   bm agec power
## 1  5   12    77
## 2  5    3    66
## 3  0   10    70
## 4  0   15    57
## 5  9    7    70
## 6 11   12    70

You are now ready to fit a regularized Poisson GLM for y  with input x .

Let's go!
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

Your turn

You will fit a regularized Poisson GLM on the mtpl  data with the {glmnet} package.

Q: using the constructed y  and x

1. Fit a glmnet  with lasso penalty and store the fitted object in mtpl_glmnet . Use the
following arguments family = "poisson", offset = ___ .

2. Display the order of the variables and their names via row.names(mtpl_glmnet$beta) .

3. Plot the solutions path. Pick a meaningful value for lambda  via cross-validation.

4. Which variables are selected in the lasso model? As a last step, you will fit a Poisson GLM
with the selected variables. What do you see?

5. List some pros and cons of the above strategy.
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Q.1 fit a regularized Poisson GLM

alpha <- 1 # for lasso penalty
mtpl_glmnet <- glmnet(x = x, y = y, 
                      family = "poisson", 
                      offset = log(mtpl$expo), 
                      alpha = alpha, 
                      standardize = TRUE, 
                      intercept = TRUE)

Q.2 display the variables via

row.names(mtpl_glmnet$beta) 
##  [1] "coverageFO"   "coveragePO"   "coverageTPL"  "f
##  [6] "fleetY"       "sexmale"      "ageph"        "b
## [11] "power"

Q.3 plot the solutions path

plot(mtpl_glmnet, xvar = 'lambda', label = TRUE)
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Q.3 pick a value for lambda

set.seed(123)
fold_id <- sample(rep(1:10, length.out = nrow(mtpl)), 
                  nrow(mtpl))
mtpl_glmnet_cv <- cv.glmnet(x, y, family = "poisson", 
                            alpha = alpha, 
                            nfolds = 10, 
                            foldid = fold_id, 
                            type.measure = "deviance", 
                            standardize = TRUE, 
                            intercept = TRUE)
plot(mtpl_glmnet_cv)

coef(mtpl_glmnet_cv, s = "lambda.min")
## 12 x 1 sparse Matrix of class "dgCMatrix"
##                        s1
## (Intercept)  -2.106680932
## coverageFO   -0.006499730
## coveragePO    .          
## coverageTPL   0.050002173
## fuelgasoline -0.165864612
## usework      -0.069292342
## fleetY       -0.049283838
## sexmale      -0.013718073
## ageph        -0.006347490
## bm            0.058564280
## agec         -0.002004356
## power         0.003448081
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Q.3 pick a value for lambda

set.seed(123)
fold_id <- sample(rep(1:10, length.out = nrow(mtpl)), 
                  nrow(mtpl))
mtpl_glmnet_cv <- cv.glmnet(x, y, family = "poisson", 
                            alpha = alpha, 
                            nfolds = 10, 
                            foldid = fold_id,
                            type.measure = "deviance", 
                            standardize = TRUE, 
                            intercept = TRUE)
plot(mtpl_glmnet_cv)

coef(mtpl_glmnet_cv, s = "lambda.1se")
## 12 x 1 sparse Matrix of class "dgCMatrix"
##                        s1
## (Intercept)  -2.124039910
## coverageFO    .          
## coveragePO    .          
## coverageTPL   .          
## fuelgasoline  .          
## usework       .          
## fleetY        .          
## sexmale       .          
## ageph        -0.002916928
## bm            0.046163778
## agec          .          
## power         .
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Q.4 refit the models using only the selected features

mtpl$coverage <- relevel(mtpl$coverage, "PO")
mtpl_formula_refit <- nclaims ~ 1 + coverage + 
                      fuel + use + fleet + sex + 
                      ageph + bm + agec + power
mtpl_glm_refit <- glm(mtpl_formula_refit, 
                      data = mtpl, 
                      offset = log(mtpl$expo), 
                      family = poisson())

The selection obtained via lambda.min

term estimate std.error statistic p.value

(Intercept) -1.9892872 0.0401325 -49.5679730 0.0000000

coverageFO 0.0044293 0.0244274 0.1813238 0.8561134

coverageTPL 0.0743796 0.0172363 4.3152799 0.0000159

fuelgasoline -0.1731052 0.0153266 -11.2944557 0.0000000

usework -0.0862841 0.0334470 -2.5797233 0.0098880

fleetY -0.1226498 0.0435289 -2.8176618 0.0048375

sexmale -0.0253198 0.0162468 -1.5584505 0.1191265

ageph -0.0074262 0.0005391 -13.7764864 0.0000000

bm 0.0639249 0.0017328 36.8902457 0.0000000

agec -0.0004698 0.0019368 -0.2425874 0.8083251

power 0.0038535 0.0003799 10.1421096 0.0000000
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Q.4 refit the models using only the selected features

mtpl_formula_refit_2 <- nclaims ~ 1 + ageph + bm 
mtpl_glm_refit_2 <- glm(mtpl_formula_refit_2, 
                        data = mtpl, 
                        offset = log(mtpl$expo), 
                        family = poisson())

The selection obtained via lambda.1se

term estimate std.error statistic p.value

(Intercept) -1.8251292 0.0282345 -64.64189 0

ageph -0.0083839 0.0005274 -15.89605 0

bm 0.0625774 0.0017141 36.50764 0
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Thanks!

Slides created with the R package xaringan.

Course material available via

 https://github.com/katrienantonio/hands-on-machine-learning-R-module-1
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