
Hands-on Machine Learning with R - Module 1

Katrien Antonio & Roel Henckaerts & Jonas Crevecoeur

Webinar | October - November, 2023

Prologue

2 / 156

Introduction

Course
 https://github.com/katrienantonio/hands-on-machine-learning-R-module-1

The course repo on GitHub, where you can find the data sets, lecture sheets, R scripts and R markdown files.

Us
 https://katrienantonio.github.io/ & https://be.linkedin.com/in/jonascrevecoeur &

https://be.linkedin.com/in/roelhenckaerts

 katrien.antonio@kuleuven.be & roel.henckaerts@kuleuven.be

 (Katrien) Professor in insurance data science

 (Jonas) PhD in insurance data science, now consultant in statistics, data science and data engineering with Data Minded

 (Roel) PhD in insurance data science, now consultant in data science with AI start up Prophecy Labs

3 / 156

https://github.com/katrienantonio/hands-on-machine-learning-R-module-1
https://katrienantonio.github.io/
https://be.linkedin.com/in/jonascrevecoeur
https://be.linkedin.com/in/roelhenckaerts
mailto:katrien.antonio@kuleuven.be
mailto:roel.henckaerts@kuleuven.be
https://www.prophecylabs.com/

Checklist
☑ Do you have a fairly recent version of R?

☑ Do you have a fairly recent version of RStudio?

☑ Have you installed the R packages listed in the software requirements?

or

☑ Have you created an account on posit cloud (to avoid any local installation issues)?

4 / 156

Why this course?

The goals of this course

develop practical machine learning (ML) foundations

fill in the gaps left by traditional training in actuarial science or econometrics

focus on the use of ML methods for the analysis of frequency + severity data, but also non-standard data
such as images

explore a substantial range of methods (and data types) (from GLMs to deep learning), but - most importantly -

build foundation so that you can explore other methods (and data types) yourself.

"In short, we will cover things that we wish someone had taught us in our undergraduate programs."
This quote is from the Data science for economists course by Grant McDermott.

5 / 156

http://github.com/uo-ec607/lectures

Prologue

Knowing me, knowing you:
statistical and machine learning

Supervised and unsupervised learning
Regression and classification
Statistical modeling: the two cultures

Model accuracy and loss functions

Overfitting and bias-variance tradeoff

Data splitting, Resampling methods

Parameter tuning

with {caret}, {rsample} and {purrr}

Target and feature engineering

Data leakage
Pre-processing steps
Specifying blue-prints with {recipes}
Putting it all together: {recipes} and
{caret}/{rsample}

Regression models

Creating models in R and tidy model output with
{broom}
GLMs with {glm}
GAMs with {mgcv}
Regularized (G)LMs with {glmnet}.

Module 1's Outline

6 / 156

Some roadmaps to explore the ML landscape...

Source: Machine Learning for Everyone In simple words. With real-world examples. Yes, again.

7 / 156

https://vas3k.com/blog/machine_learning/

8 / 156

Knowing me, knowing you:

statistical and machine learning

9 / 156

Supervised learning builds ("learns") a model
 (the Signal) such that the outcome or target
 can be written as

with features and error term (the
Noise).

Supervised learners construct predictive
models.

Supervised learning

f

Y

Y = f(x1, … , xp) + ϵ

x1, … , xp ϵ

Picture taken from Machine Learning for Everyone. In simple words. With real-world examples. Yes, again

10 / 156

https://vas3k.com/blog/machine_learning/

With unsupervised learning there is NO
outcome or target , only the feature vector

.

Let denote the sample size and the
number of features.

Then, is the matrix of features, with
 observation on variable or feature .

Unsupervised learners construct descriptive
models, without any supervising output,
letting the data "speak for itself".

Unsupervised learning

Y

x = (x1, … , xp)

n p

X n × p

xi,j i j

Picture taken from Machine Learning for Everyone. In simple words. With
real-world examples. Yes, again

11 / 156

https://vas3k.com/blog/machine_learning/
https://vas3k.com/blog/machine_learning/

Picture taken from this source.

12 / 156

https://twitter.com/athena_schools/status/1063013435779223553

What's in a name?
Machine learning constructs algorithms that learn from data.

Statistical learning emphasizes statistical models and the assessment of uncertainty.

Data science applies mathematics, statistics, machine learning, engineering, etc. to extract knowledge form data.

"Data Science is statistics on a Mac . "

Source: Brandon M. Greenwell on Introduction to Machine Learning in .

13 / 156

https://github.com/bgreenwell/intro-ml-r
https://github.com/bgreenwell/intro-ml-r

Statistical learning or data modeling culture

assume statistical model, estimate parameter values
validate with goodness-of-fit tests and residual
inspection

Machine learning or algo modeling culture

inside of the box is complex and unknown
find algorithm to predict
measure performance by predictive accuracy

Statistical modeling: the two cultures
Consider a vector of input variables , being transformed into some vector of response variables via a black box algorithm.

Source: Breiman (2001, Statistical Science) on Statistical modeling: the two cultures.

x y

f(x) y

14 / 156

Newspeak from the two cultures

Statistical learning Machine learning

origin statistics computer science

f(x) model algorithm

emphasis interpretability, precision and uncertainty large scale applicability, prediction accuracy

jargon parameters, estimation weights, learning

CI uncertainty of parameters no notion of uncertainty

assumptions explicit a priori assumption no prior assumption, learn from the data

Source: read the blog Why a mathematician, statistician and machine learner solve the same problem differently

15 / 156

https://blog.galvanize.com/why-a-mathematician-statistician-machine-learner-solve-the-same-problem-differently-2/



Your turn

As discussed in the lecture, many problems in ML can be approached as a regression,

classification or clustering problem.

Q: consider the following three problem settings and label them as regression, classification
or clustering.

1. In disability insurance: how do disability rates depend on the state of the economy (e.g.
GDP)?

2. In MTPL insurance: predict whether a claim is attritional or large, in casu a claim that
exceeds the threshold of 100 000 EUR?

3. How can we group customers based on the insurance products they bought from the
company?

16 / 156

Model accuracy and loss functions

17 / 156

prediction
predict the target as

 - as black box setting?

inference
how does target depend on features ?

 - as white box setting?

Predictive modeling
How to use the observed data to learn or to estimate the unknown ?

How do I estimate - one way to phrase all questions that underly statistical & machine learning.

Take-aways - main reasons we want to learn about

f(.)

y = f(x1, x2, … , xp) + ϵ.

f(.)

f(.)

y f̂ (x)

y x

18 / 156

Prediction errors
Why we're stuck with irreducible error

assume and given, then

In less math:

if exists, then cannot perfectly explain

so even if , we still have irreducible error.

Thus, to form our best predictors, we will minimize reducible error.

f̂ x

E[{y − ŷ}
2] = E[{f(x) + ϵ − f̂ (x)}

2
]

= [f(x) − f̂ (x)]
2


Reducible

+ Var(ϵ)


Irreducible

ϵ x y

f̂ = f

19 / 156

Regression, use e.g. the Mean Squared Error (MSE)

Recall: is the prediction error.

Objective : minimize!

Classification, use e.g. the cross-entropy or log loss

Objective : minimize!

Model accuracy
We assess model or predictive accuracy by evaluating how well predictions actually match observed data.

Use loss functions, i.e. metrics that compare predicted values to actual values.

Many other useful loss functions (e.g. deviance in regression, Gini index in classification).

Take-away - a loss function emphasizes certain types of errors over others, thus pick a meaningful one!

n

∑
i=1

(yi − f̂ (xi))2,
1

n

yi − ŷ i = yi − f̂ (xi)

−
n

∑
i=1

(yi ⋅ log (pi) + (1 − yi) ⋅ log (1 − pi)) .
1

n

20 / 156

Overfitting and bias-variance trade off

21 / 156

Overfitting
The Signal and the Noise discussion!

Which of the following three models (in green-blue-ish) will best generalize to new data?

Inspired by Brandon Greenwell's Introduction to Machine Learning in .

22 / 156

https://github.com/bgreenwell/intro-ml-r
https://github.com/bgreenwell/intro-ml-r

Overfitting (cont.)
With a small training error, but large test error, the model is overfitting or working too hard!

The expected value of the test MSE:

In general - with more flexible methods

variance and bias

their relative rate of change determines whether the test error increases or decreases

Take-aways

U-shape curves of test MSE w.r.t model flexibility

the bias-variance tradeoff is central to quality prediction.

E(y0 − f̂ (x0))
2

= Var(f̂ (x0)) + [Bias(f̂ (x0))]2 + Var(ϵ).

23 / 156

Bias-variance trade off

Source: James et al. (2021, 2nd edition) on https://www.statlearning.com/.

24 / 156

https://www.statlearning.com/



Your turn

Data are generated from: , with the black curve as the true . The orange (linear
regression), blue (smoothing splines) and green (smoothing splines) curves are three
estimates for , with increasing level of complexity.

Q: which model do you prefer (orange, blue, green) for each of the following examples? Why?

y = f(x) + ϵ f

f

Example from James et al. (2021) on https://www.statlearning.com/.

25 / 156

https://www.statlearning.com/



Your turn

Data are generated from: , with the black curve as the true . The orange (linear
regression), blue (smoothing splines) and green (smoothing splines) curves are three
estimates for , with increasing level of complexity.

Q: which model do you prefer (orange, blue, green) for each of the following examples? Why?

y = f(x) + ϵ f

f

Example from James et al. (2021) on https://www.statlearning.com/.

26 / 156

https://www.statlearning.com/



Your turn

Data are generated from: , with the black curve as the true . The orange (linear
regression), blue (smoothing splines) and green (smoothing splines) curves are three
estimates for , with increasing level of complexity.

Q: which model do you prefer (orange, blue, green) for each of the following examples? Why?

y = f(x) + ϵ f

f

Example from James et al. (2021) on https://www.statlearning.com/.

27 / 156

https://www.statlearning.com/



Your turn

The K-nearest neighbors (KNN) classifier

take the K observations in the training data set that are 'closest' to test observation ,
calculate

KNN then assigns the test observation to the class with the highest probability, e.g.
with K=3 (from James et al., 2021)

Q: is KNN a supervised learning or unsupervised learning method? Discuss.

x0

Pr(Y = j|X = x0) = ∑
i∈N0

I(yi = j).
1

K

x0 j

28 / 156



Your turn

The K-nearest neighbors (KNN) classifier (cont.)

Now compare KNN with K equals 1, 10 and 100.

Q: which classifier do you prefer? Which of these classifiers is under-fitting, which one is over-
fitting?

29 / 156

Data splitting and resampling methods
with {caret} and {rsample}

30 / 156

Ames Iowa housing data
We will use the Ames Iowa housing data. There are 2,930 properties in the data set.

The Sale_Price (target or response) was recorded along with 80 predictors, including:

location (e.g. neighborhood) and lot information
house components (garage, fireplace, pool, porch, etc.)
general assessments such as overall quality and condition
number of bedrooms, baths, and so on.

More details in De Cock (2011, Journal of Statistics Education).

The raw data are at http://bit.ly/2whgsQM but we will use a processed version found in the AmesHousing package.

You will load the data with the make_ames() function from the AmesHousing library, and store the data in the object ames :

ames <- AmesHousing::make_ames()

31 / 156

http://ww2.amstat.org/publications/jse/v19n3/decock.pdf
http://bit.ly/2whgsQM
https://github.com/topepo/AmesHousing

Training set

to develop, to train,
to tune, to compare
different settings, ...

Test set

to obtain unbiased
estimate of final
model's
performance.

Data splitting
We fit our model on past data and get .

What we want: how does our model generalize to new, unseen data , or: is close to ?

{(x1, y1), (x2, y2), … , (xn, yn)} f̂

(x0, y0) f̂ (x0) y0

Picture taken from Introduction to Machine Learning in .

32 / 156

https://github.com/bgreenwell/intro-ml-r
https://github.com/bgreenwell/intro-ml-r

set.seed(123)
index_1 <- sample(1 : nrow(ames),
 size = round(nrow(ames) * 0.7))
train_1 <- ames[index_1,]
test_1 <- ames[-index_1,]

nrow(train_1)/nrow(ames)

Use set.seed() for reproducibility.

Data splitting in base
We first demonstrate the splitting of the ames housing data into a training and test set, using base R instructions.

33 / 156

set.seed(123)
index_1 <- sample(1 : nrow(ames),
 size = round(nrow(ames) * 0.7))
train_1 <- ames[index_1,]
test_1 <- ames[-index_1,]

nrow(train_1)/nrow(ames)

Sample indices from 1 : nrow(ames) such that in total 70%
of the records is selected.

Vector index_1 now stores the row numbers of the
selected records.

Data splitting in base
We first demonstrate the splitting of the ames housing data into a training and test set, using base R instructions.

34 / 156

set.seed(123)
index_1 <- sample(1 : nrow(ames),
 size = round(nrow(ames) * 0.7))
train_1 <- ames[index_1,]
test_1 <- ames[-index_1,]

nrow(train_1)/nrow(ames)

Put the selected records in training set train_1 by
subsetting the original data frame ames with the row
numbers stored in index_1 .

Data splitting in base
We first demonstrate the splitting of the ames housing data into a training and test set, using base R instructions.

35 / 156

set.seed(123)
index_1 <- sample(1 : nrow(ames),
 size = round(nrow(ames) * 0.7))
train_1 <- ames[index_1,]
test_1 <- ames[-index_1,]

nrow(train_1)/nrow(ames)

Put the not selected records in test set test_1 .

Data splitting in base
We first demonstrate the splitting of the ames housing data into a training and test set, using base R instructions.

36 / 156

set.seed(123)
index_1 <- sample(1 : nrow(ames),
 size = round(nrow(ames) * 0.7))
train_1 <- ames[index_1,]
test_1 <- ames[-index_1,]

nrow(train_1)/nrow(ames)
[1] 0.7

What is the ratio of the number of records in train_1
versus original data set ames ?

Data splitting in base
We first demonstrate the splitting of the ames housing data into a training and test set, using base R instructions.

37 / 156

library(caret)
set.seed(123)
index_2 <- caret::createDataPartition(
 y = ames$Sale_Price,
 p = 0.7,
 list = FALSE)
train_2 <- ames[index_2,]
test_2 <- ames[-index_2,]

nrow(train_2)/nrow(ames)

Load the library {caret}.

Use set.seed() for reproducibility.

Data splitting in {caret}
The {caret} package - short for Classification And REgression Training - contains functions to streamline the model training
process for complex regression and classification problems.

With the {caret} package, the function createDataPartition will do the job.

38 / 156

library(caret)
set.seed(123)
index_2 <- caret::createDataPartition(
 y = ames$Sale_Price,
 p = 0.7,
 list = FALSE)
train_2 <- ames[index_2,]
test_2 <- ames[-index_2,]

nrow(train_2)/nrow(ames)

createDataPartition takes in y the vector of outcomes of
the data set we wish to split. createDataPartition will do
stratified sampling based on levels of y (for factor) or
groups determined by the percentiles of y (for numeric).

The percentage of data that goes to training is p .

list = FALSE tells the function not to store the results in a
list, but in a matrix (here: with 1 column)

Data splitting in {caret}
The {caret} package - short for Classification And REgression Training - contains functions to streamline the model training
process for complex regression and classification problems.

With the {caret} package, the function createDataPartition will do the job.

39 / 156

library(rsample)
set.seed(123)
split_1 <- rsample::initial_split(ames, prop = 0.7)
train_3 <- training(split_1)
test_3 <- testing(split_1)

nrow(train_3)/nrow(ames)

Load the rsample package.

Use set.seed() for reproducibility.

Data splitting in {rsample}
The {rsample} package, part of the {tidymodels} initiative of RStudio, is home to a wide variety of resampling functions.

The documentation is at rsample: the basics.

40 / 156

https://tidymodels.github.io/rsample/articles/Basics.html

library(rsample)
set.seed(123)
split_1 <- rsample::initial_split(ames, prop = 0.7)
train_3 <- training(split_1)
test_3 <- testing(split_1)

nrow(train_3)/nrow(ames)

initial_split from the {rsample} package.

Split the data ames into a training set and testing set.

prop is the proportion of data to be retained as training

Data splitting in {rsample}
The {rsample} package, part of the {tidymodels} initiative of RStudio, is home to a wide very variety of resampling functions.

The documentation is at rsample: the basics.

41 / 156

https://tidymodels.github.io/rsample/articles/Basics.html

library(rsample)
set.seed(123)
split_1 <- rsample::initial_split(ames, prop = 0.7)
train_3 <- training(split_1)
test_3 <- testing(split_1)

nrow(train_3)/nrow(ames)

The result of rsample::initial_split is an rset object.

It is stored in split_1 and ready for inspection.

Apply the functions training and test to this object to
extract the data in each split.

Data splitting in {rsample}
The {rsample} package, part of the {tidymodels} initiative of RStudio, is home to a wide very variety of resampling functions.

The documentation is at rsample: the basics.

42 / 156

https://tidymodels.github.io/rsample/articles/Basics.html

Data splitting comparison
As a check, we plot the Sale_Price as available in the train (in black) vs test (in red) data sets, created by each of the three
demonstrated methods.

43 / 156

Resampling methods
In Data splitting, we discussed training and test set. Let's now dive deeper into resampling methods.

Validation set (visual inspired by Ed Rubin's course)

we hold out a subset of the training data (e.g. 30%) and then evaluate the model on this held out validation set

calculate the loss function on this validation set, as approximation of the true test error

 high variability + inefficient use of data

picture validation set (30%) and training set (70%)

44 / 156

https://github.com/edrubin/EC524W20

Resampling methods (cont.)
In Data splitting, we discussed training and test set. Let's now dive deeper into resampling methods.

k fold cross validation (visual inspired by Ed Rubin's course)

divide training data into k equally sized groups (e.g. group 1 on the picture)

iterate over the k groups, treating each as validation set once (and train model on the other k-1 groups) (e.g. get MSE1

corresponding to fold 1)

average the folds' loss to estimate the true test error

 greater accuracy (compared to validation set).

45 / 156

https://github.com/edrubin/EC524W20

Resampling methods (cont.)
In Data splitting, we discussed training and test set. Let's now dive deeper into resampling methods.

k fold cross validation (visual inspired by Ed Rubin's course)

divide training data into k equally sized groups (e.g. group 1 on the picture)

iterate over the k groups, treating each as validation set once (and train model on the other k-1 groups) (e.g. get MSE1

corresponding to fold 1)

average the folds' loss to estimate the true test error

 greater accuracy (compared to validation set).

46 / 156

https://github.com/edrubin/EC524W20

Resampling methods (cont.)
In Data splitting, we discussed training and test set. Let's now dive deeper into resampling methods.

k fold cross validation (picture from Boehmke & Greenwell)

47 / 156

https://koalaverse.github.io/homlr/

Resampling methods (cont.)
In Data splitting, we discussed training and test set. Let's now dive deeper into resampling methods.

Leave-one-out cross validation (visual inspired by Ed Rubin's course)

each observation takes a turn as the validation set (e.g. get MSE3)

other n-1 observations are the training set

average the folds' loss to estimate the true test error

 very computationally demanding.

48 / 156

https://github.com/edrubin/EC524W20

set.seed(123)
cv_folds <- caret::createFolds(y = ames$Sale_Price,
 k = 5, list = TRUE,
 returnTrain = TRUE)

str(cv_folds)

List of 5
$ Fold1: int [1:2344] 1 2 3 4 5 6 7 8 9 10 ...
$ Fold2: int [1:2343] 2 3 4 6 7 8 9 11 13 14 ...
$ Fold3: int [1:2344] 1 2 3 4 5 6 7 8 9 10 ...
$ Fold4: int [1:2344] 1 3 5 6 10 11 12 13 14 15 ...
$ Fold5: int [1:2345] 1 2 4 5 7 8 9 10 11 12 ...

The createFolds function from {caret} splits the data into
k groups.

list = TRUE indicates that the results should be stored in
a list

returnTrain = TRUE indicates that the values returned
(and stored) in the elements of the list are - per fold - the
row numbers of the observations selected for training.

Resampling methods in {caret}
We set up 5-fold cross validation using the {caret} package.

49 / 156

set.seed(123)
cv_folds <- caret::createFolds(y = ames$Sale_Price,
 k = 5, list = TRUE,
 returnTrain = TRUE)

str(cv_folds)

List of 5
$ Fold1: int [1:2344] 1 2 3 4 5 6 7 8 9 10 ...
$ Fold2: int [1:2343] 2 3 4 6 7 8 9 11 13 14 ...
$ Fold3: int [1:2344] 1 2 3 4 5 6 7 8 9 10 ...
$ Fold4: int [1:2344] 1 3 5 6 10 11 12 13 14 15 ...
$ Fold5: int [1:2345] 1 2 4 5 7 8 9 10 11 12 ...

Inspect the list cv_folds that was returned by
createFolds(.) .

This list has k elements, each storing the row numbers of
the observations in the training set of the fold under
consideration.

Resampling methods in {caret}
We set up 5-fold cross validation using the {caret} package.

50 / 156

mean(ames[cv_folds$Fold1,]$Sale_Price)

[1] 180954.3

map_dbl(cv_folds,
 function(x) {
 mean(ames[x,]$Sale_Price)
 })

Fold1 Fold2 Fold3 Fold4 Fold5
180954.3 180781.8 180646.4 180563.0 181034.7

We calculate the average Sale_Price per fold, that is: we
average the Sale_Price over all observations selected in
the training set of a particular fold.

That would go as follows, for Fold1 in the list cv_folds

mean(ames[cv_folds$Fold1,]$Sale_Price)

and similarly for Fold2 , ..., Fold5 .

Resampling methods in {caret}

51 / 156

mean(ames[cv_folds$Fold1,]$Sale_Price)

[1] 180954.3

map_dbl(cv_folds,
 function(x) {
 mean(ames[x,]$Sale_Price)
 })

Fold1 Fold2 Fold3 Fold4 Fold5
180954.3 180781.8 180646.4 180563.0 181034.7

We apply the function mean(ames[___,]$Sale_Price) over
all k elements of the list cv_folds .

map_dbl(.x, .f) is one of the map functions from the
{purrr} package (part of {tidyverse}), used for functional
programming in R.

map_dbl(.x, .f) applies function .f to each element of
list .x .

The result is a double-precision vector, hence map_dbl and
not just map .

Btw, it is a historical anomaly that R has two names for its
floating-point vectors, double and numeric .

Resampling methods in {caret}

52 / 156

set.seed(123)
cv_rsample <- rsample::vfold_cv(ames, v = 5)
cv_rsample$splits

[[1]]
<Analysis/Assess/Total>
<2344/586/2930>

[[2]]
<Analysis/Assess/Total>
<2344/586/2930>

[[3]]
<Analysis/Assess/Total>
<2344/586/2930>

[[4]]
<Analysis/Assess/Total>
<2344/586/2930>

[[5]]
<Analysis/Assess/Total>
<2344/586/2930>

The function vfold_cv splits the data into v groups
(called folds) of equal size.

Resampling methods in {rsample}

53 / 156

set.seed(123)
cv_rsample <- rsample::vfold_cv(ames, v = 5)
cv_rsample$splits

[[1]]
<Analysis/Assess/Total>
<2344/586/2930>

[[2]]
<Analysis/Assess/Total>
<2344/586/2930>

[[3]]
<Analysis/Assess/Total>
<2344/586/2930>

[[4]]
<Analysis/Assess/Total>
<2344/586/2930>

[[5]]
<Analysis/Assess/Total>
<2344/586/2930>

The function vfold_cv splits the data into v groups
(called folds) of equal size.

We store the result of vfold_cv in the object cv_rsample .

The resulting object stores v resamples of the original
data set.

Resampling methods in {rsample}

54 / 156

set.seed(123)
cv_rsample <- rsample::vfold_cv(ames, v = 5)

cv_rsample$splits[[1]]

<Analysis/Assess/Total>
<2344/586/2930>

cv_rsample$splits[[1]] %>% analysis() %>% dim()

[1] 2344 81

cv_rsample$splits[[1]] %>% assessment() %>% dim()

[1] 586 81

Inspect the composition of the first resample:

2,344 (out of 2,930) observations go to the analysis data (for
training, i.e. v-1 folds),

586 (out of 2,930) observations go to the assessment data
(for testing, the final fold).

Resampling methods in {rsample}

55 / 156

set.seed(123)
cv_rsample <- rsample::vfold_cv(ames, v = 5)

cv_rsample$splits[[1]]

<Analysis/Assess/Total>
<2344/586/2930>

cv_rsample$splits[[1]] %>% analysis() %>% dim()

[1] 2344 81

cv_rsample$splits[[1]] %>% assessment() %>% dim()

[1] 586 81

Inspect the composition of the first resample:

get the dimensions (dim()) of the analysis data
(analysis()) of the first resample

get the dimensions (dim()) of the assessment data
(assessment()) of the first resample.

Resampling methods in {rsample}

56 / 156

map_dbl(cv_rsample$splits,
 function(x) {
 mean(rsample::analysis(x)$Sale_Price)
 })

[1] 181310.8 180991.0 180840.0 181268.6 179569.9

map_dbl(cv_rsample$splits,
 function(x) {
 nrow(rsample::analysis(x))
 })

[1] 2344 2344 2344 2344 2344

As before, use map_dbl(.x, .f) to apply a function .f
over all elements of a list .x .

Here the list is stored in cv_rsample$splits , with v = 5
elements.

Resampling methods in {rsample}

57 / 156



Your turn

Q: Now you're going to combine data splitting and resampling to create training, validation and
test folds in the Ames data.

Use caret or rsample and make the validation folds of the same size as the test fold.

58 / 156

with caret

set.seed(5678)
ind_caret <- caret::createDataPartition(
 y = ames$Sale_Price,
 p = 5/6, list = FALSE)
train_caret <- ames[ind_caret,]
test_caret <- ames[-ind_caret,]

cv_caret <- caret::createFolds(
 y = train_caret$Sale_Price, k = 5,
 list = TRUE, returnTrain = FALSE)

purrr::map_dbl(cv_caret,
 ~ nrow(ames[.,]))
Fold1 Fold2 Fold3 Fold4 Fold5
488 488 489 489 489
nrow(test_caret)
[1] 487

with rsample

set.seed(5678)
ind_rsample <- rsample::initial_split(ames,
 prop = 5/6)
train_rsample <- rsample::training(ind_rsample)
test_rsample <- rsample::testing(ind_rsample)

cv_rsample <- rsample::vfold_cv(train_rsample, v = 5)

map_dbl(cv_rsample$splits,
 ~ nrow(rsample::assessment(.)))
[1] 489 488 488 488 488
nrow(test_rsample)
[1] 489

59 / 156

Parameter tuning with {caret}, {rsample} and {purrr}

60 / 156

Finding the optimal level of flexibility highlights the bias-
variance tradeoff.

Bias : the error that comes from inaccurately estimating .

Variance : the amount would change with a different
training sample.

Take-aways : high variance models more prone

to overfitting

use resampling methods to reduce this risk

hyperparameters (or tuning parameters) control
complexity, and thus the bias-variance trade-off

identify their optimal setting, e.g. with a grid search

no analytic expression for these hyperparameters.

Tuning parameters

f

f̂

Code from Boehmke & Greenwell (2019, Chapter 2) on Hands-
on machine learning with R.

61 / 156

https://koalaverse.github.io/homlr/
https://koalaverse.github.io/homlr/

Model training & validation phase

define a set of candidate values (a grid)

assess model utility across the candidates (use clever resampling)

choose the optimal settings (optimize loss)

refit the model on entire training data with final tuning parameters

evaluate performance of the model on the test data (under).

Model selection

repeat the above steps for different models

compare performance of these models that will generalize to new
data (via test data, under).

Tuning parameters via grid search

Flow chart from Kuhn & Johnson (2013) on Applied predictive modeling.

62 / 156

http://appliedpredictivemodeling.com/

set.seed(123)
cv <- trainControl(method = "cv", number = 5,
 returnResamp = "all",
 selectionFunction = "best")
hyper_grid <- expand.grid(k = seq(2, 150, by = 2))
knn_fit <- train(y ~ x, data = df, method = "knn",
 trControl = cv,
 tuneGrid = hyper_grid)
knn_fit$bestTune

Use trainControl from {caret} to set some control
parameters that will be used in the actual train function.

Here, we use method = cv and number = 5 for 5-fold cross
validation.

Training a model with {caret}

63 / 156

set.seed(123)
cv <- trainControl(method = "cv", number = 5,
 returnResamp = "all",
 selectionFunction = "best")
hyper_grid <- expand.grid(k = seq(2, 150, by = 2))
knn_fit <- train(y ~ x, data = df, method = "knn",
 trControl = cv,
 tuneGrid = hyper_grid)
knn_fit$bestTune

In trainControl we put returnResamp = "all" to store all
resampled summary metrics.

selectionFunction = "best" specifies how we select the
optimal tuning parameter. With "best" the value that
minimizes the performance (here: RMSE) is selected.

Alternative: selectionFunction = "oneSE" applies the one
standard error rule.

Training a model with {caret}

64 / 156

set.seed(123)
cv <- trainControl(method = "cv", number = 5,
 returnResamp = "all",
 selectionFunction = "best")
hyper_grid <- expand.grid(k = seq(2, 150, by = 2))
knn_fit <- train(y ~ x, data = df, method = "knn",
 trControl = cv,
 tuneGrid = hyper_grid)
knn_fit$bestTune

Set the grid of K-values that will be searched.

expand.grid creates a data frame with one row for each
value of K to consider.

Training a model with {caret}

65 / 156

set.seed(123)
cv <- trainControl(method = "cv", number = 5,
 returnResamp = "all",
 selectionFunction = "best")
hyper_grid <- expand.grid(k = seq(2, 150, by = 2))
knn_fit <- train(y ~ x, data = df, method = "knn",
 trControl = cv,
 tuneGrid = hyper_grid)
knn_fit$bestTune

{caret} will train the method knn using the settings in
trControl = cv , across the values of K stored in tuneGrid
= hyper_grid .

The data df and formula y ~ x are used.

Training a model with {caret}

66 / 156

set.seed(123)
cv <- trainControl(method = "cv", number = 5,
 returnResamp = "all",
 selectionFunction = "best")
hyper_grid <- expand.grid(k = seq(2, 150, by = 2))
knn_fit <- train(y ~ x, data = df, method = "knn",
 trControl = cv,
 tuneGrid = hyper_grid)
knn_fit$bestTune

k
18 36

We retrieve the optimal value of the tuning parameter,
according to the selectionFunction .

For the folds created here and with selectionFunction =
"best" the optimal K value is 36.

What happens when you change to selectionFunction =
"oneSE" ?

Training a model with {caret}

67 / 156

k
18 36

k
27 54

Training a model with {caret}

68 / 156

Our starting point is the simulated data stored in df ,
resampled with 5-fold cross-validation.

set.seed(123) # for reproducibility
cv_rsample <- vfold_cv(df, 5)
cv_rsample$splits[1:3]

[[1]]
<Analysis/Assess/Total>
<286/72/358>

[[2]]
<Analysis/Assess/Total>
<286/72/358>

[[3]]
<Analysis/Assess/Total>
<286/72/358>

We fit the KNN on the holdout data in split s, using a given
K value.

holdout_results <- function(s, k_val) {
 # Fit the model to the analysis data in split s
 df_train <- analysis(s)
 mod <- knnreg(y ~ x, k = k_val, data = df_train)
 # Get the remaining group
 holdout <- assessment(s)
 # Get predictions with the holdout data set
 res <- predict(mod, newdata = holdout)
 # Return observed and predicted values
 # on holdout set
 res <- tibble(obs = holdout$y, pred = res)
 res
}

Training a model with {rsample}

69 / 156



Your turn

Now you're going to combine the resampling and model fitting instructions and set up a first
example of tuning a parameter over a grid of possible values: the K in a KNN regression
model.

Q: use the function holdout_results(.s, .k) as defined on the previous sheet. You will use
this function to calculate the RMSEk of fold k.

1. Specify a grid of values of K, store it in hyper_grid . Use expand.grid(.)

2. Pick one of the resamples stored in cv_rsample$splits and pick a value from the grid.
Calculate the RMSE on the holdout data of this split.

3. For all values in the tuning grid, calculate the RMSE averaged over all folds, and the
corresponding standard error.

4. Use the results from Q.3 to pick the value of K via minimal RMSE.

5. Pick the largest value of K such that the corresponding RMSE is below the minimal RMSE
from Q.4 plus its corresponding SE.

70 / 156

Q.1 We set up the grid

hyper_grid <- expand.grid(k = seq(2, 150, by = 2))
hyper_grid %>% slice(1:3)

k

2

4

6

Q.2 We apply the function holdout_results(.s, .k) on the
third resample, with the first value for K in the grid.

res <- holdout_results(cv_rsample$splits[[3]],
 hyper_grid[1,])
sqrt(sum((res$obs - res$pred)^2)/nrow(res))

[1] 0.3608923

Q.3 Mean RMSE over the 5 folds and corresponding SE.

RMSE <- numeric(nrow(hyper_grid))
SE <- numeric(nrow(hyper_grid))
for(i in 1:nrow(hyper_grid)){
 cv_rsample$results <- map(cv_rsample$splits,
 holdout_results,
 hyper_grid[i,])
 res <- map_dbl(cv_rsample$results,
 function(x) mean((x$obs - x$pred)^2))
 RMSE[i] <- mean(sqrt(res)) ; SE[i] <- sd(sqrt(res))
}

Q.4 Choose K via minimal RMSE

RMSE SE k lower upper

0.2917121 0.0247127 24 0.2669995 0.3164248

Q.5 Choose K via the one-standard-error rule

RMSE SE k lower upper

0.3157639 0.0284855 70 0.2872784 0.3442495
71 / 156

72 / 156

During the tuning process we inspect plots like the one on
the right.

Take-aways Less is more:

we prefer simple over more complex

choose tuning parameters based on the numerically
optimal value OR

choose a simpler model that is within a certain
tolerance of the numerically best value

use the 'one-standard-error' rule.

With the selected tuning parameters, we refit the model on
the complete training set and use it to predict the test set
(under).

Putting it all together

73 / 156

Target and feature engineering:
data pre-processing steps

74 / 156

Feature engineering:

applies pre-processing steps to predictor (features) variables

creates new input features from your existing ones (e.g. network
features derived from a social network in a fraud detection model).

Target engineering:

transforms the response variable (or target) to improve the
performance of a predictive model.

The goal is to make models more effective.

See Kuhn & Johnson (2019) on Feature Engineering and Selection: A
Practical Approach for Predictive Models for a detailed discussion.

What is feature engineering?

75 / 156

http://www.feat.engineering/
http://www.feat.engineering/

Take-aways : different models have different sensitivities to the type of target and feature values in the model.

Source: Kuhn & Johnson (2013) on Applied predictive modeling. 76 / 156

http://appliedpredictivemodeling.com/

Target engineering
We load the ames data set from the {AmesHousing} package and apply a stratified split of the data into a training (70%) and
test (30%) set.

We stratify on the distribution of the target variable Sale_Price using the strata argument in rsample::initial_split .

ames <- AmesHousing::make_ames()
set.seed(123)
split <- rsample::initial_split(ames, prop = 0.7,
 strata = "Sale_Price")
ames_train <- rsample::training(split)
ames_test <- rsample::testing(split)

We check the distribution of Sale_Price in both ames_train and ames_test .

summary(ames_train$Sale_Price)
summary(ames_test$Sale_Price)

Min. 1st Qu. Median Mean 3rd Qu. Max.
12789 129500 160000 180923 213500 755000
Min. 1st Qu. Median Mean 3rd Qu. Max.
35000 129500 160000 180502 213500 745000

77 / 156



Your turn

Inference with linear models often assumes that the target is generated from a normal
distribution.

Q: let's examine whether the Sale_Price target satisfies this assumption.

1. Plot a histogram of Sale_Price . Is normality a meaningful assumption?

2. Try some transformation functions such that the transformed target approaches a normal
distribution.

78 / 156

Q.1 original target

summary(ames_train$Sale_Price)
Min. 1st Qu. Median Mean 3rd Qu. Max.
12789 129500 160000 180923 213500 755000

Q.2 log-transformed target

summary(log(ames_train$Sale_Price))
Min. 1st Qu. Median Mean 3rd Qu. Max.
9.456 11.771 11.983 12.020 12.271 13.534

79 / 156

Feature engineering steps
Examples of common pre-processing steps:

Some models (e.g. KNN, Lasso, neural networks) require that the predictor variables are on the same scale.
Centering (C) and scaling (S) the predictors can be used for this purpose.

Other models are very sensitive to correlations between the predictors and filters or PCA signal extraction can improve
these models.

Some models find (near) zero-variance (NZV) predictors problematic, and these should be removed before fitting the
model.

In other cases, the data should be encoded in a specific way to make sure all predictors are numeric (e.g. one-hot
encoding of factor variables in neural networks).

Many models cannot cope with missing data so imputation strategies might be necessary.

Development of new features that represent something important to the outcome.

(add your own example here!)

This list is inspired by Max Kuhn (2019) on Applied Machine Learning.
80 / 156

https://github.com/topepo/aml-london-2019

draft a blueprint of the necessary pre-processing
steps, and their order

Boehme & Greenwell (2019) suggest

 1. Filter out zero or near-zero variance features.
 2. Perform imputation if required.
 3. Normalize to resolve numeric feature skewness.
 4. Standardize (center and scale) numeric features.
 5. Perform dimension reduction (e.g., PCA) on
 numeric features.
 6. One-hot or dummy encode categorical features.

avoid data leakage in the pre-processing steps when
applied to resampled data sets!

A blueprint for feature engineering

Take-aways : a proper implementation

81 / 156

https://bradleyboehmke.github.io/HOML/engineering.html#proper-implementation

We already detected the necessity of log-transforming
Sale_Price when building linear models.

We add another pre-processing step, inspired by the high
cardinality feature Neighborhood .

ames_train %>% group_by(Neighborhood) %>%
 summarize(n_obs = n()) %>%
 arrange(n_obs) %>% slice(1:4)

Neighborhood n_obs

Landmark 1

Green_Hills 2

Greens 3

Blueste 8

Feature engineering with {recipes}

82 / 156

We'll use recipe() from the {recipes} package.

The main idea is to preprocess multiple datasets using a
single recipe() .

Before we start, keep the following fundamentals of
{recipes} in mind!

Creating a recipe takes the following steps:

get the ingredients (recipe()): specify the response
and predictor variables

write the recipe (step_zzz()): define the pre-
processing steps, such as imputation, creating dummy
variables, scaling, and more

prepare the recipe (prep()): provide a dataset to base
each step on (e.g. calculate constants to do centering
and scaling)

bake the recipe (bake()): apply the pre-processing
steps to your datasets.

Feature engineering with {recipes}

Source: Rebecca Barter's blog

83 / 156

http://www.rebeccabarter.com/blog/2019-06-06_pre_processing/

Use recipe() to create the preprocessing blueprint (to be
applied later)

library(recipes)
mod_rec <- recipe(Sale_Price ~ ., data = ames_train)
mod_rec

Now, mod_rec knows the role of each variable (predictor
or outcome).

We can use selectors such as all_predictors() ,
all_outcomes() or all_nominal() .

Extend mod_rec with two pre-processing steps:

step_log(all_outcomes())

step_other(Neighborhood, threshold = 0.05) to lump the
levels that occur in less than 5% of data as "other".

mod_rec <- mod_rec %>% step_log(all_outcomes()) %>%
 step_other(Neighborhood, threshold = 0.05)
mod_rec

Feature engineering with {recipes}

84 / 156

Feature engineering with {recipes}

Now that we have a preprocessing specification, we run on it on the ames_train to prepare (or prep()) the recipe.

mod_rec_trained <- prep(mod_rec, training = ames_train, verbose = TRUE, retain = TRUE)

mod_rec_trained <- prep(mod_rec, training = ames_train, verbose = TRUE, retain = TRUE)
oper 1 step log [training]
oper 2 step other [training]
The retained training set is ~ 0.82 Mb in memory.

The retain = TRUE indicates that the preprocessed training set should be saved.

Source Max Kuhn (2019) on Applied Machine Learning.

85 / 156

https://github.com/topepo/aml-london-2019

Feature engineering with {recipes}
mod_rec_trained

Once the recipe is prepared, it can be applied to any data set using bake() . There is no need to bake() the data used in the
prep() step; you get the processed training set with juice() .

ames_test_prep <- bake(mod_rec_trained, new_data = ames_test)

86 / 156

ames_test_prep %>% group_by(Neighborhood) %>%
 summarize(n_obs = n()) %>%
 arrange(n_obs)

Neighborhood n_obs

Sawyer 43

Northridge_Heights 50

Gilbert 54

Somerset 60

Edwards 63

College_Creek 68

Old_Town 75

North_Ames 137

other 331

juice(mod_rec_trained) %>% group_by(Neighborhood) %>%
 summarize(n_obs = n()) %>%
 arrange(n_obs)

Neighborhood n_obs

Sawyer 108

Gilbert 111

Northridge_Heights 116

Somerset 122

Edwards 131

Old_Town 164

College_Creek 199

North_Ames 306

other 792

Feature engineering with {recipes}

87 / 156



Your turn

Now you will extend the existing recipe in mod_rec , prepare and bake it again!

Q: consult the {recipes} manual and specify a recipe for the housing data that includes the
following pre-processing steps (in this order)

log-transform the outcome variable
remove any zero-variance predictors
lump factor levels that occur in <= 5% of data as "other" for both Neighborhood as well as
House_Style

center and scale all numeric features.

1. Specify the above recipe on the training set and store it in the object mod_rec .
2. Inspect the object mod_rec using summary(mod_rec) . What can you learn from this

summary?
3. Prepare the recipe on the training data and then apply it to the test set.

88 / 156

https://tidymodels.github.io/recipes/reference/index.html

First, let's try to get a grasp of the House_Style feature as
well as the presence of zero-variance predictors.

ames_train %>% group_by(House_Style) %>%
 summarize(n_obs = n()) %>%
 arrange(n_obs)

House_Style n_obs

Two_and_Half_Fin 6

One_and_Half_Unf 15

Two_and_Half_Unf 17

SFoyer 61

SLvl 91

One_and_Half_Fin 214

Two_Story 609

One_Story 1036

89 / 156

To detect the presence of zero-variance and near-zero-variance features the caret library has the function nearZeroVar

library(caret)
nzv <- caret::nearZeroVar(ames_train, saveMetrics = TRUE)

names(ames_train)[nzv$zeroVar]

character(0)

names(ames_train)[nzv$nzv]

[1] "Street" "Alley" "Land_Contour"
[4] "Utilities" "Land_Slope" "Condition_2"
[7] "Roof_Matl" "Bsmt_Cond" "BsmtFin_Type_2"
[10] "BsmtFin_SF_2" "Heating" "Low_Qual_Fin_SF"
[13] "Kitchen_AbvGr" "Functional" "Enclosed_Porch"
[16] "Three_season_porch" "Screen_Porch" "Pool_Area"
[19] "Pool_QC" "Misc_Feature" "Misc_Val"

So, no features have zero- variance, but 20 features have near-zero-variance.

90 / 156

We put the recipe together with the following steps

mod_rec <- recipe(Sale_Price ~ ., data = ames_train) %>
 step_log(all_outcomes()) %>%
 step_other(Neighborhood, threshold = 0.05) %>%
 step_other(House_Style, threshold = 0.05) %>%
 step_zv(all_predictors()) %>%
 step_nzv(all_predictors()) %>%
 step_center(all_numeric(), -all_outcomes()) %>%
 step_scale(all_numeric(), -all_outcomes())
summary(mod_rec) %>% slice(1:6)

variable type role source

MS_SubClass
factor , unordered,
nominal

predictor original

MS_Zoning
factor , unordered,
nominal

predictor original

Lot_Frontage double , numeric predictor original

Lot_Area integer, numeric predictor original

Street
factor , unordered,

i l
predictor original

mod_rec

91 / 156

We prep the recipe on ames_train

mod_rec_trained <- prep(mod_rec,
 training = ames_train,
 verbose = TRUE, retain = TRUE)
oper 1 step log [training]
oper 2 step other [training]
oper 3 step other [training]
oper 4 step zv [training]
oper 5 step nzv [training]
oper 6 step center [training]
oper 7 step scale [training]
The retained training set is ~ 0.75 Mb in memory.

and bake it on the ames_test data

ames_test_prep <- bake(mod_rec_trained,
 new_data = ames_test)

We inspect the processed training and test set

dim(juice(mod_rec_trained))

[1] 2049 60

Verify that Sale_Price is log-transformed (but not centred
and scaled)

head(juice(mod_rec_trained)$Sale_Price)
head(ames_train$Sale_Price)
head(ames_test_prep$Sale_Price)
head(ames_test$Sale_Price)

[1] 11.57 11.39 11.70 11.74 11.12 11.63

[1] 105500 88000 120000 125000 67500 112000

[1] 11.56 12.15 12.18 12.16 12.37 12.15

[1] 105000 189900 195500 191500 236500 189000

levels(juice(mod_rec_trained)$House_Style)

levels(ames_test_prep$House_Style)

[1] "One_and_Half_Fin" "One_Story"
[1] "Two_Story" "other" 92 / 156

get the simulated data
set.seed(123) # for reproducibility
x <- seq(from = 0, to = 2 * pi, length = 500)
y <- sin(x) + rnorm(length(x), sd = 0.3)
df <- data.frame(x, y) %>% filter(x < 4.5)

specify the recipe
library(recipes)
rec <- recipe(y ~ x, data = df)
rec <- rec %>% step_center(all_predictors()) %>%
 step_scale(all_predictors())

doing this on complete data set df
rec_df <- prep(rec, training = df)
mean(juice(rec_df)$x) # centered!
[1] 1.473e-16
sd(juice(rec_df)$x) # scaled!
[1] 1

now we combine the recipe with rsample steps
library(rsample)
set.seed(123) # for reproducibility
cv_rsample <- vfold_cv(df, 5)

we apply the steps in the recipe to each fold
library(purrr)
cv_rsample$recipes <- map(cv_rsample$splits, prepper,
 recipe = rec)
check ?prepper

Putting it all together {rsample} and {recipes}
Let's redo the KNN example, with centering and scaling of the x-feature, by combining {rsample}/{caret} with a recipe.

93 / 156

Now you can inspect cv_rsample as follows

cv_rsample$recipes[[1]]
juice(cv_rsample$recipes[[1]])
bake(cv_rsample$recipes[[1]],
 new_data = assessment(cv_rsample$splits[[1]]))

holdout_results <- function(s, rec, k_val) {
 # Fit the model to the analysis data in split s
 df_train <- juice(rec)
 mod <- knnreg(y ~ x, k = k_val, data = df_train)
 # Get the remaining group
 holdout <- bake(rec, new_data = assessment(s))
 # Get predictions with the holdout data set
 res <- predict(mod, newdata = holdout)
 # Return observed and predicted values
 # on holdout set
 res <- tibble(obs = holdout$y, pred = res)
 res
}

res <- holdout_results(cv_rsample$splits[[2]],
 cv_rsample$recipes[[2]],
 k_val = 58)
sqrt(sum((res$obs - res$pred)^2)/nrow(res))
[1] 0.3505

Putting it all together {rsample} and {recipes}
Let's redo the KNN example, with centering and scaling of the x-feature, by combining {rsample}/{caret} with a recipe.

94 / 156

Putting it all together {rsample} and {recipes}
Let's redo the KNN example, with centering and scaling of the x-feature, by combining {rsample}/{caret} with a recipe.

RMSE <- numeric(nrow(hyper_grid))
SE <- numeric(nrow(hyper_grid))
for(i in 1:nrow(hyper_grid)){
 cv_rsample$results <- map2(cv_rsample$splits, cv_rsample$recipes,
 holdout_results,
 hyper_grid[i,])
 res <- map_dbl(cv_rsample$results,
 function(x) mean((x$obs - x$pred)^2))
 RMSE[i] <- mean(sqrt(res)) ; SE[i] <- sd(sqrt(res))
}

95 / 156

Regression models in R and
tidy model output with {broom}

96 / 156

Creating models in R
The formula interface using R's formula rules to specify a symbolic representation of the terms:

response ~ variable, with model_fn referring to the specific model function you want to use, e.g. lm for linear regression

model_fn(Sale_Price ~ Gr_Liv_Area, data = ames)

response ~ variable_1 + variable_2

model_fn(Sale_Price ~ Gr_Liv_Area + Neighborhood, data = ames)

response ~ variable_1 + variable_2 + their interaction

model_fn(Sale_Price ~ Gr_Liv_Area + Neighborhood + Neighborhood:Gr_Liv_Area, data = ames)

shorthand for all predictors

model_fn(Sale_Price ~ ., data = ames)

97 / 156

https://cran.r-project.org/doc/manuals/r-release/R-intro.html#Formulae-for-statistical-models



Your turn

You will now fit some linear regression models on the ames housing data.

You will explore the model fits with base R instructions as well as the functionalities offered
by the {broom} package.

Q: load the ames housing data set via ames <- AmesHousing::make_ames()

1. Fit a linear regression model with Sale_Price as response and Gr_Liv_Area as covariate.
Store the resulting object as model_1 .

2. Repeat your instruction, but now put it between brackets. What happens?

3. Inspect model_1 with the following set of instructions

summary(___)

extract the fitted coefficients, using ___$coefficients
what happens with summary(___)$coefficients ?
extract fitted values, using ___$fitted.values
now try to extract the R2 of this model.

98 / 156

model_1$coefficients

(Intercept) Gr_Liv_Area
13289.6 111.7

summary(model_1)$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) 13289.6 3269.703 4.064 4.941e-05
Gr_Liv_Area 111.7 2.066 54.061 0.000e+00

head(model_1$fitted.values)

1 2 3 4 5 6
198255 113367 161731 248964 195239 192447

summary(model_1)$r.squared

[1] 0.4995

Q.1 Linear model with Sale_Price as a function of Gr_Live_Area

model_1 <- lm(Sale_Price ~ Gr_Liv_Area, data = ames)

Q.3 Check model_1 - What happens - do you like this display?

summary(model_1)

Now let's extract some meaningful information from model_1 (using base R instructions)

99 / 156

Tidy model output
The package {broom} allows to summarize key information about statistical objects (e.g. a linear regression model) in so-
called tidy tibbles.

This makes it easy to report results, create plots and consistently work with large numbers of models at once.

We briefly illustrate the three essential verbs of {broom}: tidy() , glance() and augment() .

model_1 %>% broom::tidy()

term estimate std.error statistic p.value

(Intercept) 13289.6 3269.703 4.064 0

Gr_Liv_Area 111.7 2.066 54.061 0

model_1 %>% broom::glance()

r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs

0.4995 0.4994 56524 2923 0 1 -36218 72442 72460 9.355e+12 2928 2930
100 / 156

Tidy model output
The package {broom} allows to summarize key information about statistical objects (e.g. a linear regression model) in so-
called tidy tibbles.

This makes it easy to report results, create plots and consistently work with large numbers of models at once.

We briefly illustrate the three essential verbs of broom : tidy() , glance() and augment() .

model_1 %>% broom::augment() %>% slice(1:5)

Sale_Price Gr_Liv_Area .fitted .resid .hat .sigma .cooksd .std.resid

215000 1656 198255 16745 4e-04 56533 0 0.2963

105000 896 113367 -8367 8e-04 56534 0 -0.1481

172000 1329 161731 10269 4e-04 56534 0 0.1817

244000 2110 248964 -4964 8e-04 56534 0 -0.0879

189900 1629 195239 -5339 4e-04 56534 0 -0.0945

101 / 156

g_lm_1 <- ggplot(data = ames,
 aes(Gr_Liv_Area, Sale_Price)) +
 theme_bw() +
 geom_point(size = 1, alpha = 0.3) +
 geom_smooth(se = TRUE, method = "lm") +
 #scale_y_continuous(labels = scales::dollar) +
 ggtitle("Regression with AMES housing data")
g_lm_1

g_lm_2 <- model_1 %>% broom::augment() %>%
ggplot(aes(Gr_Liv_Area, Sale_Price)) +
 theme_bw() +
 geom_point(size = 1, alpha = 0.3) +
 geom_line(aes(y = .fitted), col = KULbg) +
 #scale_y_continuous(labels = scales::dollar) +
 ggtitle("Regression with AMES housing data")
g_lm_2

102 / 156

Generalized Linear Models

103 / 156

With linear regression models lm(.)

model specification

 is normally distributed with mean 0 and common variance ,
thus: is normal with mean and variance

With generalized linear regression models glm(.)

model specification

 is the link function

 follows a distribution from the exponential family.

Linear and Generalized Linear Models

Y = x
′

β + ϵ.

ϵ σ2

Y x
′
β σ2

g(E[Y]) = x
′

β.

g(.)

Y

104 / 156

Motor Third Party Liability data
We will use the Motor Third Party Liability data set. There are 163,231 policyholders in this data set.

The frequency of claiming (nclaims) and corresponding severity (avg , the amount paid on average per claim reported by a
policyholder) are the target variables in this data set.

Predictor variables are:

the exposure-to-risk, the duration of the insurance coverage (max. 1 year)
factor variables, e.g. gender, coverage, fuel
continuous, numeric variables, e.g. age of the policyholder, age of the car
spatial information: postal code (in Belgium) of the municipality where the policyholder resides.

More details in Henckaerts et al. (2018, Scandinavian Actuarial Journal) and Henckaerts et al. (2020, North American Actuarial
Journal).

105 / 156

https://katrienantonio.github.io/projects/2019/06/13/machine-learning/#data-driven
https://katrienantonio.github.io/projects/2019/06/13/machine-learning/#tree-based-pricing
https://katrienantonio.github.io/projects/2019/06/13/machine-learning/#tree-based-pricing

Motor Third Party Liability data
You can load the data from the data folder as follows:

install.packages("rstudioapi")
dir <- dirname(rstudioapi::getActiveDocumentContext()$path)
setwd(dir)
mtpl_orig <- read.table('../data/PC_data.txt',
 header = TRUE,
 stringsAsFactors = TRUE)
mtpl_orig <- as_tibble(mtpl_orig)

Alternatively, you can also go for:

install.packages("here")
dir <- here::here()
setwd(dir)
mtpl_orig <- read.table('../data/PC_data.txt',
 header = TRUE,
 stringsAsFactors = TRUE)
mtpl_orig <- as_tibble(mtpl_orig)

Some basic exploratory steps with this data follow on the next sheet.
106 / 156

Motor Third Party Liability data
Note that the data mtpl_orig uses capitals for the variable names

mtpl_orig %>% slice(1:3) %>% dplyr::select(-LONG, -LAT)

ID NCLAIMS AMOUNT AVG EXP COVERAGE FUEL USE FLEET SEX AGEPH BM AGEC POWER PC TOWN

1 1 1618 1618 1 TPL gasoline private N male 50 5 12 77 1000 BRUSSEL

2 0 0 NA 1 PO gasoline private N female 64 5 3 66 1000 BRUSSEL

3 0 0 NA 1 TPL diesel private N male 60 0 10 70 1000 BRUSSEL

We change this to lower case variables, and rename exp to expo .

mtpl <- mtpl_orig %>% rename_all(tolower) %>% rename(expo = exp)
names(mtpl)
[1] "id" "nclaims" "amount" "avg" "expo" "coverage"
[7] "fuel" "use" "fleet" "sex" "ageph" "bm"
[13] "agec" "power" "pc" "town" "long" "lat"

107 / 156

dim(mtpl)

[1] 163231 18

mtpl %>%
 summarize(emp_freq = sum(nclaims) / sum(expo))

emp_freq

0.1393

mtpl %>%
 group_by(sex) %>%
 summarize(emp_freq = sum(nclaims) / sum(expo))

sex emp_freq

female 0.1484

male 0.1361

g <- ggplot(mtpl, aes(nclaims)) + theme_bw() +
 geom_bar(aes(weight = expo),
 alpha = .5, col = KULbg, fill = KULbg) +
 labs(y = "Abs freq (in exposure)") +
 ggtitle("MTPL - number of claims")
g

108 / 156



Your turn

To get warmed up, let's load the mtpl data and do some basic investigations into the
variables. The idea is to get a feel for the data.

Q: you will work through the following exploratory steps.

1. Visualize the distribution of the ageph with a histogram.

2. For each age recorded in the data set mtpl : what is the total number of observations, the
total exposure, and the corresponding total number of claims reported?

3. Calculate the empirical claim frequency, per unit of exposure, for each age and picture it.
Discuss this figure.

4. Repeat the above for bm , the level occupied by the policyholder in the Belgian bonus-
malus scale.

109 / 156

Q.1 a histogram of ageph

ggplot(data = mtpl, aes(ageph)) + theme_bw() +
 geom_histogram(binwidth = 2, alpha = .5,
 col = KULbg, fill = KULbg) +
 labs(y = "Absolute frequency") +
 ggtitle("MTPL - age policyholder")

Q.2 for each ageph recorded

mtpl %>%
 group_by(ageph) %>%
 summarize(tot_claims = sum(nclaims),
 tot_expo = sum(expo),
 tot_obs = n())

ageph tot_claims tot_expo tot_obs

18 5 4.622 16

19 28 93.022 116

20 113 342.285 393

21 165 597.389 701

22 202 778.827 952

23 297 1165.359 1379

24 426 1752.249 2028

110 / 156

Q.3 for each ageph recorded

freq_by_age <- mtpl %>%
 group_by(ageph) %>%
 summarize(emp_freq = sum(nclaims) / sum(expo))

ggplot(data = freq_by_age,
 aes(x = ageph, y = emp_freq)) + theme_bw() +
 geom_bar(stat = 'identity', alpha = .5,
 color = KULbg, fill = KULbg) +
 ggtitle('MTPL - empirical claim freq per
 age policyholder')

Q.4 recycle the above instructions and replace ageph with
bm

111 / 156

Target variable nclaims (frequency)

Suitable distributions: Poisson, Negative Binomial.

... and avg (severity).

Suitable distributions: log-normal, gamma.

Generalized Linear Models (GLMs)
Modeling claim frequency and severity in the mtpl data set.

112 / 156

freq_glm_1 <- glm(nclaims ~ sex, offset = log(expo),
 family = poisson(link = "log"),
 data = mtpl)

Fit a Poisson GLM, with logarithmic link function.

This implies:

 ~ Poisson, with

or,

Fit this model on data = mtpl .

A Poisson GLM

Y

log(E[Y]) = x
′

β,

E[Y] = exp (x
′

β).

113 / 156

freq_glm_1 <- glm(nclaims ~ sex, offset = log(expo),
 family = poisson(link = "log"),
 data = mtpl)

Use nclaims as .

Use gender as the only (factor) variable in the linear
predictor.

Include log(expo) as an offset term in the linear predictor.

Then,

Put otherwise,

where refers to expo the exposure variable.

A Poisson GLM (cont.)

Y

x
′

β = log (expo) + β0 + β1I(male).

E[Y] = expo ⋅ exp (β0 + β1I(male)) ,

expo

114 / 156

freq_glm_1 <- glm(nclaims ~ sex, offset = log(expo),
 family = poisson(link = "log"),
 data = mtpl)

freq_glm_1 %>% broom::tidy()

term estimate std.error statistic p.value

(Intercept) -1.9076 0.0133 -143.186 0

sexmale -0.0866 0.0157 -5.523 0

Mind the specification of type.predict when using
augment with a GLM!

freq_glm_1 %>% broom::augment(type.predict = "response"

nclaims sex .fitted

1 male 0.1361

0 female 0.1484

The predict function of a GLM object offers 3 options:
"link" , "response" or "terms" .

The same options hold when augment() is applied to a
GLM object.

Let's see how the fitted values at "response" level are
constructed:

exp(coef(freq_glm_1)[1])
(Intercept)
0.1484
exp(coef(freq_glm_1)[1] + coef(freq_glm_1)[2])
(Intercept)
0.1361

Do you recognize these numbers?

Last step:

try freq_glm_1 %>% glance() or summary(freq_glm_1) for
deviances.

115 / 156



Your turn

You will further explore GLMs in R with the glm(.) function.

Q: continue with the freq_glm_1 object that was created, you will now explicitly call the
predict() function on this object.

1. Verify the arguments of predict.glm using ? predict.glm .

2. The help reveals the following structure predict(.object, .newdata, type = ("..."))
where .object is the fitted GLM object, .newdata is (optionally) a data frame to look for
the features used in the model, and type is "link" , "response" or "terms" .
Use predict with freq_glm_1 and a newly created data frame.
Explore the different options for type , and their connections.

3. Fit a gamma GLM for avg (the claim severity) with log link.
Use sex as the only variable in the model. What do you conclude?

116 / 156

Q.1 You can access the documentation via ? predict.glm .

Q.2 You create new data frames (or tibbles) as follows

male_driver <- data.frame(expo = 1, sex = "male")
female_driver <- data.frame(expo = 1, sex = "female")

Next, you apply predict with the GLM object freq_glm_1
and one of these data frames, e.g.

predict(freq_glm_1, newdata = male_driver,
 type = "response")

1
0.1361164

Q.2 Next, you apply predict with the GLM object
freq_glm_1 and one of these data frames, e.g.

predict(freq_glm_1, newdata = male_driver,
 type = "response")

1
0.1361164

At the level of the linear predictor:

predict(freq_glm_1, newdata = male_driver,
 type = "link")

1
-1.994245

exp(predict(freq_glm_1, newdata = male_driver,
 type = "link"))

1
0.1361164

117 / 156

Q.3 For the gamma regression model

sev_glm_1 <- glm(avg ~ sex, family = Gamma(link = "log"), data = mtpl)
sev_glm_1

Call: glm(formula = avg ~ sex, family = Gamma(link = "log"), data = mtpl)

Coefficients:
(Intercept) sexmale
7.5730 -0.2581

Degrees of Freedom: 18294 Total (i.e. Null); 18293 Residual
(144936 observations deleted due to missingness)
Null Deviance: 46690
Residual Deviance: 46440 AIC: 299700

118 / 156

Generalized Additive Models with {mgcv}

119 / 156

With GLMs glm(.)

transformation of the mean modelled with a linear predictor

not well suited for continuous risk factors that relate to the
response in a non-linear way.

With Generalized Additive Models (GAMs)

the predictor allows for smooth effects of continuous risk factors
and spatial covariates, next to the linear terms, e.g.

predictor is still additive

preferred R package is {mgcv} by Simon Wood.

Generalized Additive Models (GAMs)

x
′

β

x
′

β + ∑
j

fj(xj) + f(lat, long)

120 / 156

We continue working with mtpl and now focus on ageph . We will now explore four different model specifications:

1. ageph as linear effect in glm

2. ageph as factor variable in glm

3. ageph split manually into bins using cut , then used
as factor in glm

4. a smooth effect of ageph in mgcv::gam .

Let's go!

Grid of observed ageph values

a <- min(mtpl$ageph):max(mtpl$ageph)

A Poisson GAM

121 / 156

Model 1: linear effect of ageph

freq_glm_age <- glm(nclaims ~ ageph,
 offset = log(expo),
 data = mtpl,
 family = poisson(link = "log"))
pred_glm_age <- predict(freq_glm_age,
 newdata = data.frame(ageph = a, expo = 1),
 type = "terms", se.fit = TRUE)
b_glm_age <- pred_glm_age$fit
l_glm_age <- pred_glm_age$fit
 - qnorm(0.975)*pred_glm_age$se.fit
u_glm_age <- pred_glm_age$fit
 + qnorm(0.975)*pred_glm_age$se.fit
df <- data.frame(a, b_glm_age, l_glm_age, u_glm_age)

122 / 156

Model 2: ageph as factor variable in glm

freq_glm_age_f <- glm(nclaims ~ as.factor(ageph),
 offset = log(expo),
 data = mtpl,
 family = poisson(link = "log"))
pred_glm_age_f <- predict(freq_glm_age_f,
 newdata = data.frame(ageph = a, expo = 1),
 type = "terms", se.fit = TRUE)
b_glm_age_f <- pred_glm_age_f$fit
l_glm_age_f <- pred_glm_age_f$fit
 - qnorm(0.975)*pred_glm_age_f$se.fit
u_glm_age_f <- pred_glm_age_f$fit
 + qnorm(0.975)*pred_glm_age_f$se.fit
df <- data.frame(a, b_glm_age_f,
 l_glm_age_f, u_glm_age_f)

123 / 156

Model 3: ageph split into 5-year bins and then used in glm

level <- seq(min(mtpl$ageph), max(mtpl$ageph), by = 5)
freq_glm_age_c <- glm(nclaims ~ cut(ageph, level),
 offset = log(expo),
 data = mtpl,
 family = poisson(link = "log"))
pred_glm_age_c <- predict(freq_glm_age_c,
 newdata = data.frame(ageph = a, expo = 1),
 type = "terms", se.fit = TRUE)
b_glm_age_c <- pred_glm_age_c$fit
l_glm_age_c <- pred_glm_age_c$fit
 - qnorm(0.975)*pred_glm_age_c$se.fit
u_glm_age_c <- pred_glm_age_c$fit
 + qnorm(0.975)*pred_glm_age_c$se.fit
df <- data.frame(a, b_glm_age_c,
 l_glm_age_c, u_glm_age_c)

124 / 156

Model 4: smooth effect of ageph in mgcv::gam

library(mgcv)
freq_gam_age <- gam(nclaims ~ s(ageph),
 offset = log(expo),
 data = mtpl,
 family = poisson(link = "log"))
pred_gam_age <- predict(freq_gam_age,
 newdata = data.frame(ageph = a, expo = 1),
 type = "terms", se.fit = TRUE)
b_gam_age <- pred_gam_age$fit
l_gam_age <- pred_gam_age$fit -
 qnorm(0.975)*pred_gam_age$se.fit
u_gam_age <- pred_gam_age$fit +
 qnorm(0.975)*pred_gam_age$se.fit
df <- data.frame(a, b_gam_age,
 l_gam_age, u_gam_age)

125 / 156

Model 4 (revisited): picture smooth effect of ageph in mgcv::gam with built-in plot .

library(mgcv)
freq_gam <- gam(nclaims ~ s(ageph), offset = log(expo), family = poisson(link = "log"), data = mtpl)
plot(freq_gam, scheme = 4)

126 / 156

So, a GAM is a GLM where the linear predictor depends on
smooth functions of covariates.

Consider a GAM with the following predictor:

GAMs use basis functions to estimate the smooth effect

where the are known basis functions and are
coefficients that have to be estimated.

GAMs avoid overfitting by adding a wiggliness penalty to
the likelihood

GAMs then balance goodness-of-fit and wiggliness via

with the smoothing parameter.

The smoothing parameter controls the trade-off
between fit & smoothness.

More on GAMs

x
′

β + fj(xj).

fj(.)

fj(xj) =
M

∑
m=1

βjmbjm(xj),

bjm(x) βjm

∫ (fj(x)′′)
2

= βt
jSjβj.

− logL(β, βj) + λj ⋅ βt
jSjβj,

λj

λj

127 / 156

Let's run some experiments to illustrate the effect of the smoothing parameter (sp = .), the number (k = .) and type of
basis functions (bs = .). We use the mcycle data from {MASS}.

128 / 156



Your turn

You will further explore GAMs in R with the gam(.) function from the {mgcv} package.

Q: you will combine insights from building glm as well as gam objects by working through the
following coding steps.

1. Fit a gam including some factor variables as well as a smooth effect of ageph and bm .
Visualize the fitted smooth effects.

2. Specify risk profiles of drivers. Calculate their expected annual claim frequency from the
constructed gam .

3. Explain (in words) which profiles would represent high vs low risk according to the
constructed model.

129 / 156

Q.1 examine the following gam fit

freq_gam_2 <- gam(nclaims ~ sex + fuel + use +
 s(ageph) + s(bm),
 offset = log(expo), data = mtpl,
 family = poisson(link = "log"))

summary(freq_gam_2)

Family: poisson
Link function: log

Formula:
nclaims ~ sex + fuel + use + s(ageph) + s(bm)

Parametric coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.917790 0.018124 -105.817 <2e-16
sexmale 0.009167 0.016043 0.571 0.5677
fuelgasoline -0.152730 0.015100 -10.114 <2e-16
usework -0.055345 0.033090 -1.673 0.0944

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.

Approximate significance of smooth terms:
edf Ref.df Chi.sq p-value

plot(freq_gam_2, select = 1)

plot(freq_gam_2, select = 2)

130 / 156

Q.2 define some risk profiles

drivers <- data.frame(expo = c(1, 1, 1),
 sex = c("female", "female", "fema
 fuel = c("diesel", "diesel", "die
 use = c("private", "private", "pr
 ageph = c(18, 45, 65), bm = c(20,
drivers

expo sex fuel use ageph bm

1 female diesel private 18 20

1 female diesel private 45 5

1 female diesel private 65 0

Now, you predict the annual expected claim frequency for
these profiles.

predict(freq_gam_2, newdata = drivers,
 type = "response")

x

0.4031766

0.1727503

0.0951317

131 / 156

Regularized (G)LMs met {glmnet}

132 / 156

Why?

Sort through the mass of information and bring it down to its bare
essentials.

One form of simplicity is sparsity.

Only a relatively small number of predictors play a role.

How? Automatic feature selection!

Fit a model with all p predictors, but constrain or regularize the
coefficient estimates.

Shrinking the coeffcient estimates can signifcantly reduce their
variance.

Some types of shrinkage put some of the coefficients exactly
equal to zero!

Statistical learning with sparsity

133 / 156

Ridge considers the least-squares optimization problem

subject to a budget constraint

i.e. an penalty.

Shrinks the coefficient estimates (not the intercept) to zero.

Lasso considers the least-squares optimization problem

subject to a budget constraint

i.e. an penalty.

Shrinks the coefficient estimates (not the intercept) to zero
and does variable selection!

Lasso is for Least absolute shrinkage and selection
operator.

Ridge and lasso (least squares) regression

min
β0,β

n

∑
i=1

(yi − β0 −
p

∑
j=1

βjxij)
2

= min
β0,β

 RSS

p

∑
j=1

β2
j ≤ t,

ℓ2

min
β0,β

n

∑
i=1

(yi − β0 −
p

∑
j=1

βjxij)
2

= min
β0,β

 RSS

p

∑
j=1

|βj| ≤ t,

ℓ1

134 / 156

The dual problem formulation:

with ridge penalty:

with lasso penalty:

 is a tuning parameter; use resampling methods to pick a
value!

Both ridge and lasso require centering and scaling of the
features.

Ellipses (around least-squares solution) represent regions
of constant RSS.

Lasso budget on the left and ridge budget on the right.

Source: James et al. (2021) on An introduction to statistical
learning.

Ridge and lasso (least squares) regression (cont.)

min
β0,β

 RSS + λ

p

∑
j=1

β2
j

min
β0,β

 RSS + λ

p

∑
j=1

|βj|.

λ

135 / 156

https://www.statlearning.com/
https://www.statlearning.com/

We now focus on generalizations of linear models and the
lasso.

Minimize

Here:

 is the log-likelihood of a GLM.

 is the sample size

 the penalty.

What happens if:

?

?

The R package {glmnet} fits linear, logistic and multinomial,
Poisson, and Cox regression models.

Regularized GLMs

min
β0, β

− logL(β0, β; y, X) + λ∥β∥1.
1

n

logL

n

∥β∥1 = ∑p
j=1 βj ℓ1

λ → 0

λ → ∞ 136 / 156

Fit a GLM with lasso regularization in {glmnet}
{glmnet} is a package that fits a generalized linear model via penalized maximum likelihood.

Main function call (with a selection of arguments, see ? glmnet for a complete list)

fit <- glmnet(x, y, family = ., alpha = ., weights = ., offset = ., nlambda = ., standardize = ., intercept = .)

where

x is the input matrix and y is the response variable
family the response type, e.g. family = poisson
weights and offset
nlambda is the number of values, default is 100
standardize should x be standardized prior to fitting the model sequence?
intercept should incercept be fitted?
alpha a value between 0 and 1, such that the penalty becomes

Thus, with the lasso penalty and the ridge penalty results.

λ

λPα(β) = λ ⋅
p

∑
j=1

{ β2
j + α|βj|} .

(1 − α)

2

α = 1 α = 0 137 / 156

Following the vignette we start with penalized linear
regression

library(glmnet)
data(QuickStartExample)

This example loads an input matrix x and vector y of
outcomes. The input matrix x is not standardized yet
(check this!).

We calibrate a lasso linear regression model

fit <- glmnet(x, y, family = "gaussian",
 alpha = 1, standardize = TRUE,
 intercept = TRUE)
summary(fit)

Note that the formula notation y ~ x can not be used with
glmnet .

Some tidy instructions are available for glmnet objects
(but not all), e.g.

library(broom)
tidy(fit)

term step estimate lambda dev.ratio

(Intercept) 1 0.6607581 1.630762 0.0000000

(Intercept) 2 0.6312350 1.485890 0.0552832

(Intercept) 3 0.5874616 1.353887 0.1458910

(Intercept) 4 0.5475769 1.233612 0.2211153

(Intercept) 5 0.5112354 1.124021 0.2835678

A first example of {glmnet}

138 / 156

https://web.stanford.edu/~hastie/Papers/Glmnet_Vignette.pdf

plot(fit, label = TRUE) plot(fit, label = TRUE, xvar = 'lambda')

139 / 156

plot(fit, xvar = 'dev', label = TRUE) print(fit)

Call: glmnet(x = QuickStartExample$x, y = QuickStar

Df %Dev Lambda
1 0 0.00 1.63100
2 2 5.53 1.48600
3 2 14.59 1.35400
4 2 22.11 1.23400
5 2 28.36 1.12400
6 2 33.54 1.02400
7 4 39.04 0.93320
8 5 45.60 0.85030
9 5 51.54 0.77470
10 6 57.35 0.70590
11 6 62.55 0.64320
12 6 66.87 0.58610
13 6 70.46 0.53400
14 6 73.44 0.48660
15 7 76.21 0.44330
16 7 78.57 0.40400
17 7 80.53 0.36810
18 7 82.15 0.33540
19 7 83.50 0.30560
20 7 84.62 0.27840
21 7 85.55 0.25370
22 7 86 33 0 23120

140 / 156

Get estimated coefficients for handpicked value

coef(fit, s = 0.1)

21 x 1 sparse Matrix of class "dgCMatrix"
s1
(Intercept) 0.150928072
V1 1.320597195
V2 .
V3 0.675110234
V4 .
V5 -0.817411518
V6 0.521436671
V7 0.004829335
V8 0.319415917
V9 .
V10 .
V11 0.142498519
V12 .
V13 .
V14 -1.059978702
V15 .
V16 .
V17 .
V18 .
V19 .

glmnet returns a sequence of models for the users to
choose from, i.e. a model for every lambda .

How do we select the most appropriate model?

Use cross-validation to pick a lambda value. The default is
10-folds cross-validation.

cv_fit <- cv.glmnet(QuickStartExample$x, QuickStartExam

We can pick the lambda that minimizes the cross-
validation error.

cv_fit$lambda.min
[1] 0.07569327

Or we use the one-standard-error-rule.

cv_fit$lambda.1se
[1] 0.1593271

141 / 156

We plot the cross-validation error for the inspected grid of lambda values.

plot(cv_fit)

142 / 156

For the selected lambda (via cv_fit$lambda.min) we
inspect which parameters are non-zero (on the right).

Now, compare this to the selected variables obtained via
cv_fit$lambda.1se .

coef(fit, s = cv_fit$lambda.min)

21 x 1 sparse Matrix of class "dgCMatrix"
s1
(Intercept) 0.14867414
V1 1.33377821
V2 .
V3 0.69787701
V4 .
V5 -0.83726751
V6 0.54334327
V7 0.02668633
V8 0.33741131
V9 .
V10 .
V11 0.17105029
V12 .
V13 .
V14 -1.07552680
V15 .
V16 .
V17 .
V18 .
V19 .
V20 -1.05278699 143 / 156

The variables V1 , V3 , V5-8 , V11 , V14 and V20 are
selected in the regression model.

However, the corresponding estimates (on the left) are
biased, and shrunk to zero.

To remove this bias, we refit the model, only using the
selected variables.

attach(QuickStartExample)
subset <- data.frame(y = y, V1 = x[, 1], V3 = x[, 3],
 V5 = x[, 5], V6 = x[, 6],
 V7 = x[, 7], V8 = x[, 8],
 V11 = x[, 11], V14 = x[, 14],
 V20 = x[, 20])
final_model <- lm(y ~ V1 + V3 + V5 + V6 + V7 + V8 +
 V11 + V14 + V20, data = subset)
final_model %>% broom::tidy()

What is your judgement about V7 (see coefficients on the
right)?

What do you observe when comparing the estimates below
with those shown on the previous sheet?

term estimate std.error statistic p.value

(Intercept) 0.1416891 0.0995658 1.4230704 0.1581730

V1 1.3746695 0.0968211 14.1980421 0.0000000

V3 0.7688247 0.0942568 8.1567012 0.0000000

V5 -0.8991610 0.1033747 -8.6980793 0.0000000

V6 0.6115910 0.0900882 6.7888025 0.0000000

V7 0.0947279 0.0972959 0.9736059 0.3328618

V8 0.3933822 0.0920456 4.2737767 0.0000477

V11 0.2600734 0.0994215 2.6158659 0.0104367

V14 -1.1239616 0.0885267 -12.6963039 0.0000000

V20 -1.1491267 0.1117142 -10.2863111 0.0000000

144 / 156

Next, we fit a Poisson regression model with lasso
penalty on the mtpl data set.

The regularization penalty helps us to select the interesting
features from the data set.

glmnet requires the features as input matrix x and the
target as a vector y .

Recall:

mtpl has continuous features (e.g. ageph , bm , power)

mtpl has factor variables with two levels (e.g. sex ,
fleet)

but also factor variables with more than 2 levels
(coverage)

Consider different types of coding factor variables.

Apply the contrasts function to the variable coverage

map(mtpl[, c("coverage")], contrasts,
 contrasts = FALSE)
$coverage
FO PO TPL
FO 1 0 0
PO 0 1 0
TPL 0 0 1

map(mtpl[, c("coverage")], contrasts,
 contrasts = TRUE)
$coverage
PO TPL
FO 0 0
PO 1 0
TPL 0 1

What's the difference?

{glmnet} and the MTPL data set

145 / 156

{glmnet} and the MTPL data set (cont.)
We construct the input matrix for glmnet .

y <- mtpl$nclaims

x <- model.matrix(~ coverage + fuel + use + fleet + sex + ageph + bm +
 agec + power, data = mtpl,
 contrasts.arg = map(mtpl[, c("coverage")], contrasts,
 contrasts = FALSE))[,-1]

x[1:10,]

Put the response or outcome variable in y .

In the mtpl data set we build a Poisson model for nclaims .

146 / 156

{glmnet} and the MTPL data set (cont.)
We construct the input matrix for glmnet .

y <- mtpl$nclaims

x <- model.matrix(~ coverage + fuel + use + fleet + sex + ageph + bm +
 agec + power, data = mtpl,
 contrasts.arg = map(mtpl[, c("coverage")], contrasts,
 contrasts = FALSE))[,-1]

Use model.matrix to create the input matrix x .

We code the factor variable coverage with one-hot-encoding. Here, three dummy variables will be created for the three levels
of coverage .

The other factor variables fuel , use , fleet , sex are dummy coded, with one dummy variable.

147 / 156

{glmnet} and the MTPL data set (cont.)
We construct the input matrix for glmnet .

y <- mtpl$nclaims

x <- model.matrix(~ coverage + fuel + use + fleet + sex + ageph + bm +
 agec + power, data = mtpl,
 contrasts.arg = map(mtpl[, c("coverage")], contrasts,
 contrasts = FALSE))[,-1]

Use model.matrix to create the input matrix x .

We remove the first column, representing the intercept, from the model.matrix .

148 / 156

{glmnet} and the MTPL data set (cont.)
Let's check the input matrix x

coverageFO coveragePO coverageTPL fuelgasoline usework fleetY sexmale ageph
1 0 0 1 1 0 0 1 50
2 0 1 0 1 0 0 0 64
3 0 0 1 0 0 0 1 60
4 0 0 1 1 0 0 1 77
5 0 0 1 1 0 0 0 28
6 0 0 1 1 0 0 1 26
bm agec power
1 5 12 77
2 5 3 66
3 0 10 70
4 0 15 57
5 9 7 70
6 11 12 70

You are now ready to fit a regularized Poisson GLM for y with input x .

Let's go!

149 / 156



Your turn

You will fit a regularized Poisson GLM on the mtpl data with the {glmnet} package.

Q: using the constructed y and x

1. Fit a glmnet with lasso penalty and store the fitted object in mtpl_glmnet . Use the
following arguments family = "poisson", offset = ___ .

2. Display the order of the variables and their names via row.names(mtpl_glmnet$beta) .

3. Plot the solutions path. Pick a meaningful value for lambda via cross-validation.

4. Which variables are selected in the lasso model? As a last step, you will fit a Poisson GLM
with the selected variables. What do you see?

5. List some pros and cons of the above strategy.

150 / 156

Q.1 fit a regularized Poisson GLM

alpha <- 1 # for lasso penalty
mtpl_glmnet <- glmnet(x = x, y = y,
 family = "poisson",
 offset = log(mtpl$expo),
 alpha = alpha,
 standardize = TRUE,
 intercept = TRUE)

Q.2 display the variables via

row.names(mtpl_glmnet$beta)
[1] "coverageFO" "coveragePO" "coverageTPL" "f
[6] "fleetY" "sexmale" "ageph" "b
[11] "power"

Q.3 plot the solutions path

plot(mtpl_glmnet, xvar = 'lambda', label = TRUE)

151 / 156

Q.3 pick a value for lambda

set.seed(123)
fold_id <- sample(rep(1:10, length.out = nrow(mtpl)),
 nrow(mtpl))
mtpl_glmnet_cv <- cv.glmnet(x, y, family = "poisson",
 alpha = alpha,
 nfolds = 10,
 foldid = fold_id,
 type.measure = "deviance",
 standardize = TRUE,
 intercept = TRUE)
plot(mtpl_glmnet_cv)

coef(mtpl_glmnet_cv, s = "lambda.min")
12 x 1 sparse Matrix of class "dgCMatrix"
s1
(Intercept) -2.106680932
coverageFO -0.006499730
coveragePO .
coverageTPL 0.050002173
fuelgasoline -0.165864612
usework -0.069292342
fleetY -0.049283838
sexmale -0.013718073
ageph -0.006347490
bm 0.058564280
agec -0.002004356
power 0.003448081

152 / 156

Q.3 pick a value for lambda

set.seed(123)
fold_id <- sample(rep(1:10, length.out = nrow(mtpl)),
 nrow(mtpl))
mtpl_glmnet_cv <- cv.glmnet(x, y, family = "poisson",
 alpha = alpha,
 nfolds = 10,
 foldid = fold_id,
 type.measure = "deviance",
 standardize = TRUE,
 intercept = TRUE)
plot(mtpl_glmnet_cv)

coef(mtpl_glmnet_cv, s = "lambda.1se")
12 x 1 sparse Matrix of class "dgCMatrix"
s1
(Intercept) -2.124039910
coverageFO .
coveragePO .
coverageTPL .
fuelgasoline .
usework .
fleetY .
sexmale .
ageph -0.002916928
bm 0.046163778
agec .
power .

153 / 156

Q.4 refit the models using only the selected features

mtpl$coverage <- relevel(mtpl$coverage, "PO")
mtpl_formula_refit <- nclaims ~ 1 + coverage +
 fuel + use + fleet + sex +
 ageph + bm + agec + power
mtpl_glm_refit <- glm(mtpl_formula_refit,
 data = mtpl,
 offset = log(mtpl$expo),
 family = poisson())

The selection obtained via lambda.min

term estimate std.error statistic p.value

(Intercept) -1.9892872 0.0401325 -49.5679730 0.0000000

coverageFO 0.0044293 0.0244274 0.1813238 0.8561134

coverageTPL 0.0743796 0.0172363 4.3152799 0.0000159

fuelgasoline -0.1731052 0.0153266 -11.2944557 0.0000000

usework -0.0862841 0.0334470 -2.5797233 0.0098880

fleetY -0.1226498 0.0435289 -2.8176618 0.0048375

sexmale -0.0253198 0.0162468 -1.5584505 0.1191265

ageph -0.0074262 0.0005391 -13.7764864 0.0000000

bm 0.0639249 0.0017328 36.8902457 0.0000000

agec -0.0004698 0.0019368 -0.2425874 0.8083251

power 0.0038535 0.0003799 10.1421096 0.0000000

154 / 156

Q.4 refit the models using only the selected features

mtpl_formula_refit_2 <- nclaims ~ 1 + ageph + bm
mtpl_glm_refit_2 <- glm(mtpl_formula_refit_2,
 data = mtpl,
 offset = log(mtpl$expo),
 family = poisson())

The selection obtained via lambda.1se

term estimate std.error statistic p.value

(Intercept) -1.8251292 0.0282345 -64.64189 0

ageph -0.0083839 0.0005274 -15.89605 0

bm 0.0625774 0.0017141 36.50764 0

155 / 156

Thanks!

Slides created with the R package xaringan.

Course material available via

 https://github.com/katrienantonio/hands-on-machine-learning-R-module-1

156 / 156

https://github.com/yihui/xaringan
https://github.com/katrienantonio/hands-on-machine-learning-R-module-1

