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Prologue




Introduction

Course

) https://github.com/katrienantonio/hands-on-machine-learning-R-module-1

The course repo on GitHub, where you can find the data sets, lecture sheets, R scripts and R markdown files.

Us

@ https://katrienantonio.github.io/ & https://be.linkedin.com/in/jonascrevecoeur &
https://be.linkedin.com/in/roelhenckaerts

< katrien.antonio@kuleuven.be & roel.henckaerts@kuleuven.be

& (Katrien) Professor in insurance data science

& (Jonas) PhD in insurance data science, now consultant in statistics, data science and data engineering with Data Minded

& (Roel) PhD in insurance data science, now consultant in data science with Al start up Prophecy Labs
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Checklist

Do you have a fairly recent version of R?

Do you have a fairly recent version of RStudio?

Have you installed the R packages listed in the software requirements?
or

Have you created an account on posit cloud (to avoid any local installation issues)?
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Why this course?

The goals of this course f

develop practical machine learning (ML) foundations

fill in the gaps left by traditional training in actuarial science or econometrics

focus on the use of ML methods for the analysis of frequency + severity data, but also non-standard data
such as images

explore a substantial range of methods (and data types) (from GLMs to deep learning), but - most importantly -
build foundation so that you can explore other methods (and data types) yourself.

"In short, we will cover things that we wish someone had taught us in our undergraduate programs."

This quote is from the Data science for economists course by Grant McDermott.
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http://github.com/uo-ec607/lectures

Module 1's Qutline

e Prologue e Parameter tuning

e Knowing me, knowing you: o with {caret}, {rsample} and {purrr}

statistical and machine learning _ '
e Target and feature engineering

o Supervised and unsupervised learning
o Regression and classification
o Statistical modeling: the two cultures

o Data leakage

o Pre-processing steps

o Specifying blue-prints with {recipes}
e Model accuracy and loss functions o Putting it all together: {recipes} and

{caret}/{rsample}
e Qverfitting and bias-variance tradeoff

e Regression models
e Data splitting, Resampling methods

o Creating models in R and tidy model output with
{broom}
o GLMs with {glm}
o GAMs with {mgcv}
o Regularized (G)LMs with {glmnet}.
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K-Means Agglomerative Haivs Buyes SVM
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METHODS
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Algorithm

Boosting

SARSA  Deep @-Network AdaBoost

LightGB|
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Perceptrons
(MLP)
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Convolutional
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(CNN)

DCNN

Recurrent
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Generative
Adversarial Networks

LSTM (GAN)

Some roadmaps to explore the ML landscape...

LEARNING

Source: Machine Learning for Everyone In simple words. With real-world examples. Yes, again.
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THE MAIN TYPES OF MACHINE LEARNING

Simple data When quality is \Complicated data
Clear features a real problem Unclear features
/ N Belief in a miracle
ENSEMBLES
CLASSICAL
ML
but we h«can.«eJc AND
an environmen
to i:tjmoctm&‘th DEEP LEARNING
REINFORCEMENT
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Knowing me, knowing you:

statistical and machine learning




Supervised learning

Supervised learning builds ("learns") a model
f (the Signal) such that the
Y can be written as

=f(m1,...,

with features x, ...
Noise).

zp) + €

, T, and error term € (the

Supervised learners construct predictive
models.

CLASS|CAL MACHINE LEARNING

Data is pre-categorized
or numerical

SUPERVISED
a ca':;;grcyt ar\fflir\r::ger
CLASS|F|CAT|0N

«Divide the socks by color»

7

REGRESSION
«Divide the ties by length»
UO:‘IDD
° \e

EN_

Data is not labeled
in any way

UNSUPERVISED

by stmiDl::”?fy |dentify Sequences
CLUSTERING Find hidden
«Split up similar clothing dependencies

into Stacks»
ASSOC|ATION
«Find What clothes | often
i Wwear together»

e,

T+ Y
+

DIMENSION
REDUCTION

(generalization)
«Moke the best outfits from the given clothesn

Picture taken from Machine Learning for Everyone. In simple words. With real-world examples. Yes, again
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Unsupervised learning

With unsupervised learning there is NO PUE REEAS SIS [N TS OPTIIAL 1Y

(also illustrating the K-means method)

, only the feature vector
r=(T1,...,%p)

e I
.. e e /.-_.
. = . - *. . * . . L
Let n denote the sample size and p the R R AL
number of features.
. . 5 1. Put Kebob kiosks in random 2. Watch how buyers choose 3. Move kiosks closer to
Then, X is the n X p matrix of features, with places in ity this BRAERE: one the centers of their popularity
x; ; observation 4 on variable or feature j.
. . \ .- ] .: . .'
Unsupervised learners construct descriptive ' ?@ S ) gl
models, without any supervising output, " e
letting the data "speak for itself™". \ _
4. Watch and move again S. Repeat a million times 6. Done!

You're god of Kebabs!

Picture taken from Machine Learning for Everyone. In simple words. With
real-world examples. Yes, again
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Supervised Leaing Unsupervised Learning

Picture taken from this source.
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What's in a name?

Machine learning constructs algorithms that learn from data.
Statistical learning emphasizes statistical models and the assessment of uncertainty.

Data science applies mathematics, statistics, machine learning, engineering, etc. to extract knowledge form data.

"Data Science is statistics on a Mac @&. "

) The R Seri
¢ J Max Kuhn - Kjell Johnson Hiands0 e i . Interpfﬂtable
Gareil Jaimes ands-On Machine . .
Trewoe Hastie {‘,ifl;'ﬂ'f.f" Learning with R Machine Learnlng
Robert Tibshirani

Jerome Friedman A Guide for Making

Rahert Tibshirani l
Black Box Models Explainable
3

Data Mining, lnference, and Prediction

with Applicatiansm R
Bradley Boehmke
Brandon Greenw:

@ Springer

@ChristophMolnar

Source: Brandon M. Greenwell on Introduction to Machine Learning in Q.
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Statistical modeling: the two cultures

Consider a vector of input variables x, being transformed into some vector of response variables 7 via a black box algorithm.

y <— nature <+« X
Statistical learning or data modeling culture Machine learning or algo modeling culture
e assume statistical model, estimate parameter values e inside of the box is complex and unknown
* validate with goodness-of-fit tests and residual « find algorithm f(x) to predict

inspection e measure performance by predictive accuracy

Y unknown «— —— X

linear regression X
Y4— logistic regression [+
Cox model
decision trees

neural nets

Source: Breiman (20071, Statistical Science) on Statistical modeling: the two cultures.

14 [ 156



Newspeak from the two cultures

Statistical learning Machine learning
origin statistics computer science
f(x) model algorithm

emphasis interpretability, precision and uncertainty large scale applicability, prediction accuracy

jargon parameters, estimation weights, learning
Cl uncertainty of parameters no notion of uncertainty
assumptions explicit a priori assumption no prior assumption, learn from the data

Source: read the blog Why a mathematician, statistician and machine learner solve the same problem differently
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https://blog.galvanize.com/why-a-mathematician-statistician-machine-learner-solve-the-same-problem-differently-2/

Your turn

As discussed in the lecture, many problems in ML can be approached as a regression,
classification or clustering problem.

Q: consider the following three problem settings and label them as regression, classification
or clustering.

1. In disability insurance: how do disability rates depend on the state of the economy (e.g.
GDP)?

2. In MTPL insurance: predict whether a claim is attritional or large, in casu a claim that
exceeds the threshold of 100 000 EUR?

3. How can we group customers based on the insurance products they bought from the
company?
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Model accuracy and loss functions




Predictive modeling

How to use the observed data to learn or to estimate the unknown f(.)?
= f(x1,22,...,2p) + €.

How do | estimate f(.) - one way to phrase all questions that underly statistical & machine learning.

Take—awaysﬁ - main reasons we want to learn about f(.)

p R Traditional Statistics Machine Learning
predict the target v as f ()
an . < A Data Science Continuum -
@ - as black box setting?

White-box modelling Black-box modelling

simpler computation, emphasis on high computational complexity, emphasis
introspection, form, causal effects and on speed and quality of prediction,

i n f'e re n Ce processes, finding a 'correct' model finding a 'performant' model

how does target 1/ depend on features x7?

@ - as white box setting?
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Prediction errors

Why we're stuck with irreducible error

assume f and x given, then

B[~ Y] = B {f0) + ¢~ f @)} ]

A

2
flz)—f (5'3)] + Var(e)
N P R/_/
Reducible Irreducible

In less math:
e if € exists, then & cannot perfectly explain
* SO even iff = f, we still have irreducible error.

Thus, to form our best predictors, we will minimize reducible error.
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Model accuracy

We assess model or predictive accuracy by evaluating how well predictions actually match observed data.

Use loss functions, i.e. metrics that compare predicted values to actual values.

Regression, use e.g. the Mean Squared Error (MSE) Classification, use e.g. the cross-entropy or log loss
1 & A
n Z( g Jf (wi))za - Z -log (pi) + (1 — y;) - log (1 — pi)) -
i—1

Recall: 1, — 7, = y, — f (2;) is the prediction error. Objective @ : minimize!

Objective @ : minimize!

Many other useful loss functions (e.g. deviance in regression, Gini index in classification).

Ta ke'aWay ‘4 - a loss function emphasizes certain types of errors over others, thus pick a meaningful one!
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Overfitting and bias-variance trade off




Overfitting

The Signal and the Noise discussion!

Which of the following three models (in green-blue-ish) will best generalize to new data?

Underfitting Just right? Overfitting

Inspired by Brandon Greenwell's Introduction to Machine Learning in Q.
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Overfitting (cont.)

With a small training error, but large test error, the model is overfitting or working too hard!

The expected value of the test MSE:

A

B(sy - £(20)) = Vax(f (a0)) + [Bias(f (a0))]? + Var(e).

I general - with more flexible methods

e variance 0 and bias 0

 their relative rate of change determines whether the test error increases or decreases

Take-aways

e U-shape curves of test MSE w.rt model flexibility

 the bias-variance tradeoff is central to quality prediction.
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Bias-variance trade off

High Bias Low Bias
Low Variance High Variance
- —————— e e - Jr—

Test Sample

Prediction Error

p

Training Sample

Low High
Model Complexity

Source: James et al. (2021, 2nd edition) on https://www.statlearning.com/.
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https://www.statlearning.com/

2 Data are generated from: y = f(x) + €, with the black curve as the true f. The orange (linear
—

Your turn

regression), blue (smoothing splines) and green (smoothing splines) curves are three
estimates for f, with increasing level of complexity.

0: which model do you prefer (orange, blue, green) for each of the following examples? Why?

2.0
|

1.5

Mean Squared Error
1.0

0.0

X Flexibility

Example from James et al. (2021) on https://www.statlearning.com/.
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2 Data are generated from: y = f(x) + €, with the black curve as the true f. The orange (linear
—

Your turn

regression), blue (smoothing splines) and green (smoothing splines) curves are three
estimates for f, with increasing level of complexity.

0: which model do you prefer (orange, blue, green) for each of the following examples? Why?

1.5 2.0
|

|

Mean Squared Error

0.0

X Flexibility

Example from James et al. (2021) on https://www.statlearning.com/.
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2 Data are generated from: y = f(x) + €, with the black curve as the true f. The orange (linear
—

Your turn

regression), blue (smoothing splines) and green (smoothing splines) curves are three
estimates for f, with increasing level of complexity.

0: which model do you prefer (orange, blue, green) for each of the following examples? Why?

Mean Squared Error

X Flexibility

Example from James et al. (2021) on https://www.statlearning.com/.
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The K-nearest neighbors (KNN) classifier

» take the K observations in the training data set that are 'closest' to test observation xy,

Your turn calculate

e KNN then assigns the test observation g to the class 7 with the highest probability, e.g.
with K=3 (from James et al., 2021)

0: is KNN a supervised learning or unsupervised learning method? Discuss.
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The K-nearest neighbors (KNN) classifier (cont.)

Now compare KNN with K equals 1, 10 and 100.

KNN: K=1 KNN: K=10 KNN: K=100

0: which classifier do you prefer? Which of these classifiers is under-fitting, which one is over-
fitting?
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Data splitting and resampling methods
with {caret} and {rsample}




Ames lowa housing data

We will use the Ames lowa housing data. There are 2,930 properties in the data set.

The sale_Price (target or response) was recorded along with 80 predictors, including:

location (e.g. neighborhood) and lot information

house components (garage, fireplace, pool, porch, etc.)
general assessments such as overall quality and condition
number of bedrooms, baths, and so on.

More details in De Cock (2011, Journal of Statistics Education).
The raw data are at http://bit.ly/2whgsqMm but we will use a processed version found in the AmesHousing package.

You will load the data with the make_ames() function from the AmesHousing library, and store the data in the object ames:

ames < AmesHousing::make_ames()
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Data splitting

We fit our model on past data {(1, v1), (Z2, ), - - - » (Zn, 1,,)} and get f .

What we want: how does our model generalize to new, unseen data (g, ), or: is F (20) close to 07

Training set

All available data

\ J
I

e to obtain unbiased \ : J
estimate of final : L
Fold 1 Fold2|Fold3| .. [Foldk| Testing  [ICCCICLE
model's

performance.

e to develop, to train,
to tune, to compare
different settings, ...

Test set

Picture taken from Introduction to Machine Learning in Q.
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Data splitting in base

We first demonstrate the splitting of the ames housing data into a training and test set, using base R instructions.

set.seed(123) Use set.seed() for reproducibility.
index_1 <« sample(1 : nrow(ames),
size = round(nrow(ames) * 0.7))
train_1 <« ames[index_1, ]
test 1 <« ames[-index_ 1, ]

nrow(train_1)/nrow(ames)
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Data splitting in base

We first demonstrate the splitting of the ames housing data into a training and test set, using base R instructions.

set.seed(123)
index_1 <« sample(1 : nrow(ames),
size = round(nrow(ames) * 0.7))
train_1 <« ames[index_1, ]
test 1 <« ames[-index_ 1, ]

nrow(train_1)/nrow(ames)

Sample indices from 1 : nrow(ames) such that in total 70%
of the records is selected.

Vector index_1 now stores the row numbers of the
selected records.
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Data splitting in base

We first demonstrate the splitting of the ames housing data into a training and test set, using base R instructions.

set.seed(123) Put the selected records in training set train_1 by
index_1 ¢ sample(1 : nrow(ames), subsetting the original data frame ames with the row

, size = voundireen{anes) B0 numbers stored in index 1.
train_1 <« ames[index_1, ]
test 1 <« ames[-index_ 1, ]

nrow(train_1)/nrow(ames)
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Data splitting in base

We first demonstrate the splitting of the ames housing data into a training and test set, using base R instructions.

set.seed(123) Put the not selected records in test set test_1.
index_1 <« sample(1 : nrow(ames),
size = round(nrow(ames) * 0.7))
train_1 <« ames[index_1, ]
test 1 <« ames[-index_ 1, ]

nrow(train_1)/nrow(ames)

36 / 156



Data splitting in base

We first demonstrate the splitting of the ames housing data into a training and test set, using base R instructions.

set.seed(123) What Is the ratio of the number of records in train_1

index_1 ¢« sample(1 : nrow(ames), versus original data set ames ?
size = round(nrow(ames) * 0.7))

train_1 <« ames[index_1, ]
test 1 <« ames[-index_ 1, ]

nrow(train_1)/nrow(ames)
w [1] 0.7
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Data splitting in {caret}

The {caret} package - short for Classification And REgression Training - contains functions to streamline the model training
process for complex regression and classification problems.

With the {caret} package, the function createbataPartition will do the job.

library(caret) Load the library {caret}.
set.seed(123)
index 2 ¢ caret::createDataPartition( Use set.seed() for reproducibility.
y = ames$Sale Price,
p = 0.7,

list = FALSE)
train 2 <« ames[index_2, ]
test 2 <« ames[-index_ 2, ]

nrow(train_2)/nrow(ames)
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Data splitting in {caret}

The {caret} package - short for Classification And REgression Training - contains functions to streamline the model training
process for complex regression and classification problems.

With the {caret} package, the function createbataPartition will do the job.

library(caret) createDataPartition takes in y the vector of outcomes of
set.seed(123) the data set we wish to split. createbataPartition will do
Anges 2 = RIS & renielaie Far il Lar stratified sampling based on levels of y (for factor) or
y = ames$Sale Price, . . _
b= 0.7 groups determined by the percentiles of y (for numeric).
list = FALSE) S
cradn 2 ¢ ames dndex 2. The percentage of data that goes to training is p.

test 2 <« ames[-index_ 2, ] _ .
list = FALSE tells the function not to store the results in a

nrow(train_2)/nrow(ames) list, but in a matrix (here: with 1 column)
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Data splitting in {rsample} x

The {rsample} package, part of the {tidymodels} initiative of RStudio, is home to a wide variety of resampling functions.

The documentation is at rsample: the basics.

library(rsample) Load the rsample package.
set.seed(123)
split_ 1 <« rsample::initial_split(ames, prop = 0.7) Use set.seed() for reproducibility.

train_3 <« training(split_1)
test 3 ¢« testing(split_1)

nrow(train_3)/nrow(ames)
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https://tidymodels.github.io/rsample/articles/Basics.html

Data splitting in {rsample} x

The {rsample} package, part of the {tidymodels} initiative of RStudio, is home to a wide very variety of resampling functions.

The documentation is at rsample: the basics.

library(rsample) initial_split from the {rsample} package.
set.seed(123)

split_ 1 ¢« rsample::initial_split(ames, prop = 0.7) Split the data ames into a training set and testing set.
train_3 <« training(split_1)

test_3 ¢« testing(split_1) prop IS the proportion of data to be retained as training

nrow(train_3)/nrow(ames)
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https://tidymodels.github.io/rsample/articles/Basics.html

Data splitting in {rsample} x

The {rsample} package, part of the {tidymodels} initiative of RStudio, is home to a wide very variety of resampling functions.

The documentation is at rsample: the basics.

library(rsample) The result of rsample::initial_split IS an rset object.
set.seed(123)

split_1 <« rsample::initial_split(ames, prop = 0.7) It is stored in split_1 and ready for inspection.
train_3 <« training(split_1)

test_3 ¢« testing(split_1) Apply the functions training and test to this object to
nrow(train 3)/nrow(ames) extract the data in each split.
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https://tidymodels.github.io/rsample/articles/Basics.html

Data splitting comparison

As a check, we plot the sale Price as available in the train (in black) vs test (in red) data sets, created by each of the three

demonstrated methods.

base R caret rsample
86-06
66-06
>
2 46-06 -
()
©
26-06
0e+00 4 /
0e+00  2e+05  4e+05  6e+05 0e+00 2e+05 4e+05 6e+05 0e+00 2e+05 4e+05 6e+05
Sale_Price Sale_Price Sale_Price
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Resampling methods

In Data splitting, we discussed training and test set. Let's now dive deeper into resampling methods.
Validation set (visual inspired by Ed Rubin's course)
« we hold out a subset of the training data (e.g. 30%) and then evaluate the model on this held out validation set

» calculate the loss function on this validation set, as approximation of the true test error

. '@ high variability + inefficient use of data

o picture validation set (30%) and training set (70%)

0000000000000 O OOOOOOOOOOOOOOOOOOOOOOOOO
0000000000000 O OOOOOOOOOOOOOOOOOOOOOOOOO
00000000000000 OO OOOOOOOOOOOOOOOOOOOOOOO
00000000000000 OO OOOOOOOOOOOOOOOOOOOOOOO
00000000000000 OO OOOOOOOOOOOOOOOOOOOOOOO
00000000000000 OO OOOOOOOOOOOOOOOOOOOOOOO
00000000000000 OO OOOOOOOOOOOOOOOOOOOOOOO
00000000000000 OO OOOOOOOOOOOOOOOOOOOOOOO
00000000000000 OO OOOOOOOOOOOOOOOOOOOOOOO
00000000000000 OO OOOOOOOOOOOOOOOOOOOOOOO
00000000000000 OO OOOOOOOOOOOOOOOOOOOOOOO
00000000000000 O OO OOOOOOOOOOOOOOOOOOOOOO
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https://github.com/edrubin/EC524W20

Resampling methods (cont.)

In Data splitting, we discussed training and test set. Let's now dive deeper into resampling methods.
k fold cross validation (visual inspired by Ed Rubin's course)
o divide training data into k equally sized groups (e.g. group 1 on the picture)

« iterate over the k groups, treating each as validation set once (and train model on the other k-1 groups) (e.g. get MSE4

corresponding to fold 1)

e average the folds' loss to estimate the true test error

. l£7 greater accuracy (compared to validation set).
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https://github.com/edrubin/EC524W20

Resampling methods (cont.)

In Data splitting, we discussed training and test set. Let's now dive deeper into resampling methods.
k fold cross validation (visual inspired by Ed Rubin's course)
o divide training data into k equally sized groups (e.g. group 1 on the picture)

« iterate over the k groups, treating each as validation set once (and train model on the other k-1 groups) (e.g. get MSE4

corresponding to fold 1)

e average the folds' loss to estimate the true test error

. l£7 greater accuracy (compared to validation set).
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000 ceccccceceeeee || | | | 0000000000000000
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000 ceccccceceeeee || | | | 0000000000000000
000 ceccccceceeeee || | | | 0000000000000000
00000006 0ceceeee ||| [ | 0000000000000000 46 | 156
0000000 cececeeee ||| | [ 0000000000000000


https://github.com/edrubin/EC524W20

Resampling methods (cont.)

In Data splitting, we discussed training and test set. Let's now dive deeper into resampling methods.

k fold cross validation (picture from Boehmke & Greenwell)

- o
-8 -
- K20 K -
- K K

Train [ _4

= RN N RN RN RN~
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https://koalaverse.github.io/homlr/

Resampling methods (cont.)

In Data splitting, we discussed training and test set. Let's now dive deeper into resampling methods.
Leave-one-out cross validation (visual inspired by Ed Rubin's course)

« each observation takes a turn as the validation set (e.g. get MSE3)

e other n-1 observations are the training set

e average the folds' loss to estimate the true test error

. 1S very computationally demanding.

00.00000000000000000000000000000000000000
0000000000000000000000000000000000000000)
| 000000000000000000000000000000000000000)
0000000000000000000000000000000000000000)
0000000000000000000000000000000000000000
0000000000000000000000000000000000000000)
00.00000000000000000000000000000000000000)
0000000000000000000000000000000000000000)
0000000000000000000000000000000000000000)
0000000000000000000000000000000000000000)
0000000000000000000000000000000000000000)
0000000000000000000000000000000000000000
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Resampling methods in {caret}

We set up 5-fold cross validation using the {caret} package.

set.seed(123) The createfFolds function from {caret} splits the data into
cv_folds ¢ caret::createFolds(y = ames$Sale_Price, k groups.
k =5, list = TRUE,
returnTrain = TRUE) list = TRUE indicates that the results should be stored in
a list

str(cv_folds)
returnTrain = TRUE indicates that the values returned

## List of © (and stored) in the elements of the list are - per fold - the
#t $ Foldl: int [1:2344] 123 4567 8 9 10 ... row numbers of the observations selected for training.

#t  $ Fold2: int [1:2343] 2 3 4 6 7 8 9 11 13 14

# $ Fold3: int [1:2344] 1 2 3 456 7 8 9 10

# $ Fold4: int [1:2344] 1 3 5 6 10 11 12 13 14 15

#t $ Fold5: int [1:2345] 1 2 457 8 9 10 11 12

( G >
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Resampling methods in {caret}

We set up 5-fold cross validation using the {caret} package.

set.seed(123) Inspect the list cv_folds that was returned by
cv_folds <« caret::createFolds(y = ames$Sale_Price, createFolds(.).

k = 5, list = TRUE,

returnTrain = TRUE) This list has k elements, each storing the row numbers of
R EEEE———————. > the observations in the training set of the fold under

consideration.
str(cv_folds)

#H List of 5

#H $ Foldl: int [1:2344] 1 2 3 456 7 8 9 10

#H $ Fold2: int [1:2343] 2 3 4 6 7 8 9 11 13 14

#H $ Fold3: int [1:2344] 1 2 3 456 7 8 9 10

#H# $ Fold4: int [1:2344] 1 3 56 10 11 12 13 14 15
## $ Fold5: int [1:2345] 1 2 45 7 8 9 10 11 12

4 G >
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Resampling methods in {caret}

mean(ames[cv_folds$Foldl, ]$Sale Price)

#H [1] 180954.3

map_dbl(cv_folds,
function(x) {
mean(ames[x, ]$Sale Price)

})

HHt Fold1l Fold2 Fold3 Fold4 Fold5
#H 180954.3 180781.8 180646.4 180563.0 181034.7

We calculate the average sale_price per fold, that is: we
average the sale_Price over all observations selected in
the training set of a particular fold.

That would go as follows, for Fold1 in the list cv_folds

mean(ames[cv_folds$Foldl, ]$Sale Price)

and similarly for Fold2, .., Folds.
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Resampling methods in {caret}

mean(ames[cv_folds$Foldl, ]$Sale_Price) We apply the function mean(ames[___, ]$Sale_Price) over
all k elements of the list cv_folds.

#t [1] 180954.3 . :
map_dbl(.x, .f) Isone of the map functions from the

TEP— {purrr} package (part of {tidyverse}), used for functional

function(x) { programming in R.
mean(ames[x, ]$Sale_Price) . _
1) map_dbl(.x, .f) applies function .f to each element of
list .x.

HHt Foldl Fold2 Fold3 Fold4 Fold5 . It q bl .. h d
i 180954.3 180781.8 180646.4 180563.0 181034.7 The result is a double-precision vector, hence map_dbl an

not just map.

Btw, it is a historical anomaly that R has two names for its
floating-point vectors, double and numeric.
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Resampling methods in {rsample} X

set.seed(123) The function vfold_cv splits the data into v groups

cv_rsample ¢« rsample::vfold_cv(ames, v = 5) (called folds) of equal size.
cv_rsample$splits

[[1]]
<Analysis/Assess/Total>
<2344/586/2930>

[[2]]
<Analysis/Assess/Total>
<2344/586/2930>

[[3]]
<Analysis/Assess/Total>
<2344/586/2930>

[[4]]
<Analysis/Assess/Total>
<2344/586/2930>

[[51]
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Resampling methods in {rsample} X

set.seed(123) The function vfold_cv splits the data into v groups

cv_rsample <« rsample::vfold_cv(ames, v = 5) (called folds) of equal size.
cv_rsample$splits

We store the result of vfold_cv in the object cv_rsample.

[[1]]
<Analysis/Assess/Total> The resulting object stores v resamples of the original

<2344/586/2930> data set.

[[2]]
<Analysis/Assess/Total>
<2344/586/2930>

[[3]]
<Analysis/Assess/Total>
<2344/586/2930>

[[4]]
<Analysis/Assess/Total>
<2344/586/2930>

[[51]
<Analysis/Assess/Total> 54 [ 156
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Resampling methods in {rsample} X

set.seed(123) Inspect the composition of the first resample:

cv_rsample <« rsample::vfold cv(ames, v = 5)
2,344 (out of 2,930) observations go to the analysis data (for

cv_rsample$splits[[1]] training, i.e. v-1 folds),

586 (out of 2,930) observations go to the assessment data

H <A is/A T i
<Analysis/Assess/Total> (for testing, the final fold).

tHt <2344/586/2930>

cv_rsample$splits[[1]] %>% analysis() %>% dim()
#H [1] 2344 81

cv_rsample$splits[[1]] %>% assessment() %>% dim()

# [1] 586 81
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Resampling methods in {rsample} X

set.seed(123) Inspect the composition of the first resample:

cv_rsample <« rsample::vfold cv(ames, v = 5)
get the dimensions (dim() ) of the analysis data

cv_rsample$splits[[1]] (analysis()) of the first resample

get the dimensions (dim() ) of the assessment data

t#Ht <Analysis/Assess/Total>
/ (assessment() ) of the first resample.

tHt <2344/586/2930>

cv_rsample$splits[[1]] %>% analysis() %>% dim()
#H [1] 2344 81

cv_rsample$splits[[1]] %>% assessment() %>% dim()

# [1] 586 81

56 / 156



Resampling methods in {rsample} LY

map_dbl(cv_rsample$splits, As before, use map_dbl(.x, .f) to apply a function .f
function(x) { over all elements of a list .x.
mean(rsample::analysis(x)$Sale_Price)
b)

Here the list Is stored in cv_rsample$splits, with v = 5

elements.
# [1] 181310.8 180991.0 180840.0 181268.6 179569.9

map_dbl(cv_rsample$splits,
function(x) {
nrow(rsample::analysis(x))

})

#H [1] 2344 2344 2344 2344 2344
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7 0: Now you're going to combine data splitting and resampling to create training, validation and
—) test folds in the Ames data.

Your tu rn Use caret or rsample and make the validation folds of the same size as the test fold.
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with caret

set.seed(5678)
ind _caret <« caret::createDataPartition(
y = ames$Sale_ Price,
p = 5/6, list = FALSE)
train _caret ¢« ames[ind caret, ]
test caret <« ames[-ind _caret, ]

cv_caret ¢« caret::createFolds(
y = train_caret$Sale_Price, k 5,
list = TRUE, returnTrain = FALSE)

purrr::map_dbl(cv_caret,

~ nrow(ames[., 1))
## Foldl Fold2 Fold3 Fold4 Fold5
HH 488 488 489 489 489
nrow(test caret)
tH [1] 487

with rsample

set.seed(5678)
ind_rsample <« rsample::initial_split(ames,

prop = 5/6)
train_rsample <« rsample::training(ind_rsample)
test_rsample <« rsample::testing(ind_rsample)

cv_rsample ¢« rsample::vfold cv(train_rsample, v = 5)

map_dbl(cv_rsample$splits,

~ nrow(rsample::assessment(.)))
# [1] 489 488 488 488 488
nrow(test_rsample)
#H [1] 489
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Parameter tuning with {caret}, {rsample} and {purrr}




Tuning parameters

Finding the optimal level of flexibility highlights the bias- Biased model fit
variance tradeoff.

Bias : the error that comes from inaccurately estimating f.

Response

Variance : the amount f would change with a different
training sample.

0 1 é 3 4
Ta ke-aways ﬂ : high variance models more prone High variance model fit
to overfitting
o use resampling methods to reduce this risk S
g
 hyperparameters (or tuning parameters) control
complexity, and thus the bias-variance trade-off
; a ; 3 :
« identify their optimal setting, e.g. with a grid search Code from Boehmke & Greenwell (2019, Chapter 2) on Hands-

_ _ on machine learning with R.
e N0 analytic expression for these hyperparameters.
61/ 156


https://koalaverse.github.io/homlr/
https://koalaverse.github.io/homlr/

Tuning parameters via grid search

Model training & validation phase

values for tuning
parameter(s)

|

For each candidate set:

{ Define a set of candidate J

define a set of candidate values (a grid)

assess model utility across the candidates (use clever resampling)

choose the optimal settings (optimize loss)

Resample
Data

refit the model on entire training data with final tuning parameters

evaluate performance of the model on the test data (under &).

{ Appregate the resampling J

into a performance profile Model SeleCtion
Determine the final J » repeat the above steps for different models
L tuning parameters
l e compare performance of these models that will generalize to new

Using the final tuning :

e data (via test data, under &).

model with the entire

tralning set

Flow chart from Kuhn & Johnson (2013) on Applied predictive modeling.
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Training a model with {caret}

set.seed(123)
cv ¢« trainControl(method = "cv", number = 5,
returnResamp = "all",
selectionFunction = "best")
hyper_grid <« expand.grid(k = seq(2, 150, by = 2))
knn_fit <« train(y ~ x, data = df, method = "knn",
trControl = cv,
tuneGrid = hyper_grid)
knn_fit$bestTune

Use trainControl from {caret}to set some control

parameters that will be used in the actual train function.

Here, we use method = cv and number = 5 for 5-fold cross

validation.
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Training a model with {caret}

set.seed(123)
cv ¢« trainControl(method = "cv", number = 5,
returnResamp = "all",
selectionFunction = "best")
hyper_grid <« expand.grid(k = seq(2, 150, by = 2))
knn_fit <« train(y ~ x, data = df, method = "knn",
trControl = cv,
tuneGrid = hyper_grid)
knn_fit$bestTune

In trainControl we put returnResamp = "all" to store all
resampled summary metrics.

selectionFunction = "best" specifies how we select the
optimal tuning parameter. With "best" the value that
minimizes the performance (here: RMSE) is selected.

Alternative: selectionFunction = "oneSE" applies the one
standard error rule.
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Training a model with {caret}

set.seed(123) Set the grid of K-values that will be searched.

cv ¢« trainControl(method = "cv", number = 5,
returnResamp = "all", expand.grid creates a data frame with one row for each
selectionFunction = "best") value of K to consider.

hyper_grid <« expand.grid(k = seq(2, 150, by = 2))

knn_fit <« train(y ~ x, data = df, method = "knn",

trControl = cv,
tuneGrid = hyper_grid)
knn_fit$bestTune
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Training a model with {caret}

set.seed(123) {caret} will train the method knn using the settings in
cv ¢« trainControl(method = "cv", number = 5, trControl = cv, across the values of K stored in tuneGrid
return?esamp =."a11", - hyper_grid.
selectionFunction = "best")
id « .gri = =
ryper_gmel < opamd.graidil = seql2, 198, oy = 2)) The data df and formula y ~ x are used.
knn_fit <« train(y ~ x, data = df, method = "knn",

trControl = cv,
tuneGrid = hyper_grid)
knn_fit$bestTune
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Training a model with {caret}

set.seed(123)
cv ¢« trainControl(method = "cv", number = 5,
returnResamp = "all",
selectionFunction = "best")
hyper_grid <« expand.grid(k = seq(2, 150, by = 2))
knn_fit <« train(y ~ x, data = df, method = "knn",
trControl = cv,
tuneGrid = hyper_grid)
knn_fit$bestTune

HHt k
#H 18 36

We retrieve the optimal value of the tuning parameter,
according to the selectionFunction.

For the folds created here and with selectionFunction
"best" the optimal K value is 36.

What happens when you change to selectionFunction

"oneSE" ?
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Training a model with {caret}

HH k

HHt k
#H 27 54

#H 18 36

Error (RMSE)
Error (RMSE)
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Training a model with {rsample}

Our starting point is the simulated data stored in df, We fit the KNN on the holdout data in split s, using a given
resampled with 5-fold cross-validation. K value.

set.seed(123) # for reproducibility holdout _results « function(s, k _val) {

cv_rsample « vfold cv(df, 5) # Fit the model to the analysis data 1n split s
cv_rsample$splits[1:3] df_train ¢« analysis(s)

mod <« knnreg(y ~ x, k = k_val, data = df_train)
# Get the remalning group

#H [[1]]
, holdout ¢ assessment(s)
t#Ht <Analysis/Assess/Total> o .
# Get predictions with the holdout data set
#Ht <286/72/358> .
- res <« predict(mod, newdata = holdout)
# Return observed and predicted values
#H [[2]]
, # on holdout set
t#Ht <Analysis/Assess/Total> .
res « tibble(obs = holdout$y, pred = res)
#Ht <286/72/358>
res
- }
#H [[3]]
t#Ht <Analysis/Assess/Total>
#Ht <286/72/358>
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N Now you're going to combine the resampling and model fitting instructions and set up a first
— example of tuning a parameter over a grid of possible values: the Kin a KNN regression
model.

Your turn

0: use the function holdout_results(.s, .k) as defined on the previous sheet. You will use
this function to calculate the RMSE of fold k.

1. Specify a grid of values of K, store it in hyper_grid. Use expand.grid(.)

2. Pick one of the resamples stored in cv_rsample$splits and pick a value from the grid.
Calculate the RMSE on the holdout data of this split.

3. For all values in the tuning grid, calculate the RMSE averaged over all folds, and the
corresponding standard error.

4. Use the results from Q.3 to pick the value of K via minimal RMSE.

5. Pick the largest value of K such that the corresponding RMSE is below the minimal RMSE
from Q.4 plus its corresponding SE.
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0.1 We set up the grid

hyper_grid <« expand.grid(k = seq(2, 150, by = 2))
hyper_grid %>% slice(1:3)

6

0.2 We apply the function holdout_results(.s, .k) onthe
third resample, with the first value for K in the grid.

res < holdout_results(cv_rsample$splits[[3]],
hyper_grid[1, ])
sqrt(sum((res$obs - res$pred)”2)/nrow(res))

#H [1] 0.3608923

0.3 Mean RMSE over the 5 folds and corresponding SE.

RMSE ¢« numeric(nrow(hyper_grid))
SE ¢« numeric(nrow(hyper_grid))
for(i in 1:nrow(hyper_grid)){
cv_rsample$results < map(cv_rsample$splits,
holdout results,
hyper_grid[i, 1)
res < map_dbl(cv_rsample$results,
function(x) mean((x$obs - x$pred)”2))
RMSE[i] <« mean(sqrt(res)) ; SE[i] ¢« sd(sqrt(res))
}

0.4 Choose K via minimal RMSE

RMSE SE k lower upper

0.2917121 0.0247127 24 0.2669995 0.3164248

0.5 Choose K via the one-standard-error rule

RMSE SE k lower upper

0.3157639 0.0284855 70 0.2872784 0.3442495
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Putting it all together

During the tuning process we inspect plots like the one on
the right.

Ta ke—aways ﬂ Less is more:

we prefer simple over more complex

choose tuning parameters based on the numerically

optimal value OR

choose a simpler model that is within a certain
tolerance of the numerically best value

use the 'one-standard-error' rule.

With the selected tuning parameters, we refit the model on
the complete training set and use it to predict the test set

(under &@).

Error (RMSE)

0.454

0.40 1

0.354

0.301

T
50

T
100

T
150
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Target and feature engineering:
data pre-processing steps




What Is feature engineering?

FEATURE
ENGINEERING
AND SELECTION

A Practical Approach
for Predictive Models

MAX KUHN
KJELL JOHNSON

@ CRC Press

The R Series

Hands-On Machine
Learning with R

Bradiey Boehmke
Brandon Greenwell

@ CRC Press

Feature engineering:
« applies pre-processing steps to predictor (features) variables

« creates new input features from your existing ones (e.g. network
features derived from a social network in a fraud detection model).

Target engineering:

 transforms the response variable (or target) to improve the
performance of a predictive model.

The goal is to make models more effective.

See Kuhn & Johnson (2019) on Feature Engineering and Selection: A
Practical Approach for Predictive Models for a detailed discussion.
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Ta ke-aways '4 - different models have different sensitivities to the type of target and feature values in the model.

Table A.1: A summary of models and some of their characteristics

Maodel Allows Pre-processing Interpretable Automatic  # Tuning Robust to  Computation
n<p feature parameters predictor time
selection noise

Linear r-szg'l'essin:»rl1 x C5, NZV, Corr v ® 0 x v
Partial least squares v Cs v o * v
Ridge regression x C5, NZV v ® x v
Elastic net/lasso X CS, NZV e v x v
Neural networks v CS5, NZV, Corr x ® * %
Support vector v cs x ® 1-3 x X
machines

MARS/FDA v o v 1-2 o o
K -nearest neighbors v C5, NZV x ® 1 o v
Single trees v o e 1 v v
Model trees/rules’ v o v 1-2 e v
Bagped trees v x e 0 v o
Random forest v X o 0-1 v X
Boosted trees v x v 3 v %
Cubist v X o 2 v X
Logistic regression® x C8, NZV, Corr v * 0 * v
{LQRM}DA"* ® NZV o x 0-2 ® v
Nearest shrunken v NZV o v 1 x v
centroids®

Naive Bayes* v NZV x ® 0-1 o o
C6.0" v o v 0-3 v X

Tregression only *classification only

Symbols represent affirmative (v'), negative (=), and somewhere in between (o)

Source: Kuhn & Johnson (2013) on Applied predictive modeling. 76 / 156
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e

Target engineering X

We load the ames data set from the {AmesHousing} package and apply a stratified split of the data into a training (70%) and
test (30%) set.

We stratify on the distribution of the target variable Sale_Price using the strata argument in rsample::initial_split.

ames ¢ AmesHousing ::make_ames()
set.seed(123)
split ¢« rsample::initial_split(ames, prop = 0.7,
strata = "Sale Price")
ames_train ¢ rsample::training(split)
ames_test ¢« rsample::testing(split)

We check the distribution of Sale Price in both ames_train and ames_test.

summary(ames_train$Sale Price)
summary(ames_test$Sale Price)

HH Min. 1st Qu. Median Mean 3rd Qu. Max.
HH 12789 129500 160000 180923 213500 755000
HH Min. 1st Qu. Median Mean 3rd Qu. Max.
HH 35000 129500 160000 180502 213500 745000
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—)

Your turn

Inference with linear models often assumes that the target is generated from a normal
distribution.

0: let's examine whether the Sale_Price target satisfies this assumption.
1. Plot a histogram of sale_Price.Is normality a meaningful assumption?

2. Try some transformation functions such that the transformed target approaches a normal
distribution.
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0.1 original target 0.2 log-transformed target

AMES - original target

AMES - tranformed target
2001

200+

count

1004

501

0e+00

2e+05 4e+05 6e+05

8e+0
Sale_Price

11 12 13
log(Sale_Price)

summary(ames_train$Sale_Price)

Ht Min. 1st Qu.

summary(log(ames_train$Sale Price))
Median Mean 3rd Qu. Max.
HHt 12789 129500

HH Min. 1st Qu. Median
160000 180923 213500

Mean 3rd Qu.
755000 HHH 9.456 11.771

Max .
11.983 12.020 12.271

13.534
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Feature engineering steps

Examples of common pre-processing steps:

e Some models (e.g. KNN, Lasso, neural networks) require that the predictor variables are on the same scale.
Centering (C) and scaling (S) the predictors can be used for this purpose.

e Other models are very sensitive to correlations between the predictors and filters or PCA signal extraction can improve
these models.

« Some models find (near) zero-variance (NZV) predictors problematic, and these should be removed before fitting the
model.

 In other cases, the data should be encoded in a specific way to make sure all predictors are numeric (e.g. one-hot
encoding of factor variables in neural networks).

e Many models cannot cope with missing data so imputation strategies might be necessary.

e Development of new features that represent something important to the outcome.

(add your own example here!)

This list is inspired by Max Kuhn (2019) on Applied Machine Learning. 80 / 156
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A blueprint for feature engineering

Ta ke-aways ﬁ . a proper implementation

 draft a blueprint of the necessary pre-processing
steps, and their order

o Boehme & Greenwell (2019) suggest

Filter out zero or near-zero variance features.
Perform imputation if required.
Normalize to resolve numeric feature skewness.

I e

Perform dimension reduction (e.g., PCA) on
numeric features.
6. One-hot or dummy encode categorical features.

. Standardize (center and scale) numeric features.

» avoid data leakage in the pre-processing steps when
applied to resampled data sets!

Pre-process --

Model

Train

3

-1 Evaluate

Pre-process -

Train

=1 Evaluate

Pre-process |- -

Train

-+ Evaluate

Pre-process |- -

Train

-. Evaluate

Pre-process |- -

Train

-+ Evaluate
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Feature engineering with {recipes}

We already detected the necessity of log-transforming Landmark

5 5 . Green_Hills A
Sale_Price when building linear models. Greens-

Blueste 4

We add another pre-processing step, inspired by the high Nonhp:iinv:::

Bloomington_Heights 4

cardinality feature Neighborhood . Meadow,_Vilags-

Briardale A
Clear_Creek 4

ames_train %>% group_by(Neighborhood) %>% South_and_West_of lowa_State_University |
summarize(n_obs = n()) %>% Stone_Brooly
- i Northridge 4
arrange(n_obs) %>% slice(1:4) Timberland {

Brookside

lowa_DOT_and_Rail_Road A

Crawford A

Neighborhood n_obs Mitchell-

Northwest_Ames

I_a ﬂ d m a rk 1 Sawyer_West
Sawyer 4

Gilbert 4

G re e n _ H I I. |.S 2 Northridge_Heights 4

Somerset 4

G freens 3 Edwards -

Old_Town
College_Creek 4

B l U eSte 8 North_Ames -

o

100

N
o
o
w
o
o

count
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Feature engineering with {recipes}

We'll use recipe() from the {recipes} package. Creating a recipe takes the following steps:

The main idea is to preprocess multiple datasets using a  get the ingredients (recipe() ): specify the response
single recipe(). and predictor variables

Before we start, keep the following fundamentals of o write the recipe (step_zzz() ): define the pre-
{recipes} in mind! processing steps, such as imputation, creating dummy

variables, scaling, and more

 prepare the recipe (prep() ): provide a dataset to base
each step on (e.g. calculate constants to do centering
and scaling)

e bake the recipe (bake() ): apply the pre-processing
steps to your datasets.

Source: Rebecca Barter's blog

83 / 156


http://www.rebeccabarter.com/blog/2019-06-06_pre_processing/

Feature engineering with {recipes}

Use recipe() to create the preprocessing blueprint (to be
applied later)

library(recipes)
mod_rec ¢« recipe(Sale_Price ~ ., data = ames_train)
mod_rec

Now, mod_rec knows the role of each variable ( predictor

Or outcome ).

We can use selectors such as all_predictors(),

all_outcomes() or all_nominal().

Extend mod_rec with two pre-processing steps:

step_log(all_outcomes())

step_other(Neighborhood, threshold = 0.05) to lump the
levels that occur in less than 5% of data as "other".

mod_rec < mod_rec %>% step_log(all_outcomes()) %>%
step_other(Neighborhood, threshold = 0.05)

mod_rec
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Feature engineering with {recipes}

recipe --> prep -—> bake/juice

(define) --> (calculate) --> (apply)

Now that we have a preprocessing specification, we run on it on the ames_train to prepare (or prep()) the recipe.

TRUE)

TRUE, retain

mod_rec_trained ¢« prep(mod_rec, training ames_train, verbose

TRUE, retain TRUE)

ames_train, verbose

mod_rec_trained ¢« prep(mod_rec, training
## oper 1 step log [training]

## oper 2 step other [training]

#H The retained trailning set 1s ~ 0.82 Mb 1in memory.

The retain = TRUE indicates that the preprocessed training set should be saved.

Source Max Kuhn (2019) on Applied Machine Learning.
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Feature engineering with {recipes}

mod_rec_trained

Once the recipe is prepared, it can be applied to any data set using bake(). There is no need to bake() the data used in the
prep() step; you get the processed training set with juice() .

ames_test _prep ¢« bake(mod rec_trained, new_data = ames_test)
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Feature engineering with {recipes}

ames_test _prep %>% group_by(Neighborhood) %>% juice(mod_rec_trained) %>% group_by(Neighborhood) %>%

summarize(n_obs = n()) %>% summarize(n_obs = n()) %>%

arrange(n_obs) arrange(n_obs)
Neighborhood n_obs Neighborhood n_obs
Sawyer 43 Sawyer 108
Northridge_Heights 50 Gilbert 111
Gilbert 54 Northridge_Heights 116
Somerset 60 Somerset 122
Edwards 63 Edwards 131
College_Creek 68 Old_Town 164
Old_Town 75 College_Creek 199
North_Ames 137 North_Ames 306
other 331 other 792
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» Now you will extend the existing recipe in mod_rec, prepare and bake it again!
—)

Q: consult the {recipes} manual and specify a recipe for the housing data that includes the
Your tu rn following pre-processing steps (in this order)

e log-transform the outcome variable

e remove any zero-variance predictors

e lump factor levels that occur in <= 5% of data as "other" for both Neighborhood as well as
House_Style

e center and scale all numeric features.

1. Specify the above recipe on the training set and store it in the object mod_rec.

2. Inspect the object mod_rec using summary(mod_rec) . What can you learn from this
summary?

3. Prepare the recipe on the training data and then apply it to the test set.
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First, let's try to get a grasp of the House_Style feature as
well as the presence of zero-variance predictors.

ames_train %>% group_by(House_Style) %>%
summarize(n_obs = n()) %>%
arrange(n_obs)

House_Style n_obs
Two_and_Half_Fin 6
One_and_Half_Unf 15
Two_and_Half_Unf 17
SFoyer 61
Slvl )
One_and_Half_Fin 214
Two_Story 609

One_Story 1036

Two_and_Half_Fin -

One_and_Half_Unf+

Two_and_Half_Unf+

SFoyer

SLvl A

One_and_Half_Fin -

Two_Story -

One_Story

o -

N
O -
o

T
500
count

~
o1+
o

T
1000
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To detect the presence of zero-variance and near-zero-variance features the caret library has the function nearzerovar

library(caret)
nzv < caret::nearZeroVar(ames train, saveMetrics = TRUE)

names(ames_train)[nzv$zeroVar]
# character(0)

names(ames_train)[nzv$nzv]

# [1] "Street" "Alley" "Land_Contour"

#Ht [4] "Utilities" "Land_Slope" "Condition 2"

t#Ht [7] "Roof Matl" "Bsmt_Cond" "BsmtFin_Type 2"
#H [10] "BsmtFin SF 2" "Heating" "Low_Qual_Fin_SF"
t#Ht [13] "Kitchen AbvGr" "Functional" "Enclosed Porch"
#H [16] "Three_season_porch" "Screen_ Porch" "Pool Area"

t#Ht [19] "Pool _QC" "Misc Feature" "Misc_Val"

So, no features have zero- variance, but 20 features have near-zero-variance.
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We put the recipe together with the following steps mod_rec

mod_rec ¢« recipe(Sale_Price ~ ., data = ames_train) %:
step_log(all_outcomes()) %>%
step_other(Neighborhood, threshold = 0.05) %>%
step_other(House_Style, threshold = 0.05) %>%
step_zv(all_predictors()) %>%
step_nzv(all_predictors()) %>%
step_center(all_numeric(), -all_outcomes()) %>¢
step_scale(all_numeric(), -all_outcomes())

summary(mod_rec) %>% slice(1:6)

<« G >

variable type role source
factor, unordered, . .

MS_SubClass . predictor original
nominal

factor, unordered,

MS_Zoning “ominal predictor original
Lot_Frontage double, numeric predictor original
Lot_Area integer, numeric predictor original
factor, unordered, 91 /156

Street . predictor original



We prep the recipe on ames_train

mod_rec_trained ¢« prep(mod_rec,
training = ames_train,

verbose = TRUE, retain = TRUE)

step log [training]
step other [training]

oper
oper
oper
oper
oper
oper
oper 7 step scale [training]

The retained training set i1s ~ 0.75 Mb 1in memory.

step other [training]
step zv [training]
step nzv [training]

S U B W N

step center [training]

THEEEERE

and bake it on the ames_test data

ames_test_prep ¢« bake(mod_rec_trained,
new_data = ames_test)

We inspect the processed training and test set

dim(juice(mod_rec_trained))

#H [1] 2049 60

Verify that sale_price is log-transformed (but not centred
and scaled)

head(juice(mod _rec_trained)$Sale Price)
head(ames_train$Sale Price)
head(ames_test _prep$Sale_Price)
head(ames_test$Sale Price)

M [1] 11.57 11.39 11.70 11.74 11.12 11.63

#H [1] 105500 88000 120000 125000 67500 112000
M [1] 11.56 12.15 12.18 12.16 12.37 12.15

#H [1] 105000 189900 195500 191500 236500 189000
levels(juice(mod_rec_trained)$House Style)
levels(ames_test_prep$House_Style)

## [1] "One_and_Half_Fin" "One_Story"
## [1] "Two_Story" "other" 92 / 156



Putting it all together {rsample} and {recipes} X

<

Let's redo the KNN example, with centering and scaling of the x-feature, by combining {rsample}/{caret} with a recipe.

# get the simulated data

set.seed(123) # for reproducibility

x ¢« seq(from = 0, to = 2 * pi, length = 500)
y ¢« sin(x) + rnorm(length(x), sd = 0.3)

df « data.frame(x, y) %>% filter(x < 4.5)

# specify the recipe

library(recipes)

rec <« recipe(y ~ x, data = df)

rec < rec %>% step_center(all_predictors()) %>%
step_scale(all_predictors())

# doing this on complete data set df
rec_df <« prep(rec, training = df)
mean(juice(rec_df)$x) # centered!

## [1] 1.473e-16

sd(juice(rec_df)$x) # scaled!
#H[1] 1

# now we combine the recipe with rsample steps
library(rsample)

set.seed(123) # for reproducibility
cv_rsample « vfold cv(df, 5)

# we apply the steps 1n the recipe to each fold

library(purrr)

cv_rsample$recipes « map(cv_rsample$splits, prepper,
recipe = rec)

# check ?prepper
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<

Putting it all together {rsample} and {recipes} X

Let's redo the KNN example, with centering and scaling of the x-feature, by combining {rsample}/{caret} with a recipe.

Now you can inspect cv_rsample as follows holdout_results <« function(s, rec, k val) {

# Fit the model to the analysis data 1n split s
cv_rsample$recipes[[1]] df _train ¢« juice(rec)
juice(cv_rsample$recipes[[1]]) mod <« knnreg(y ~ x, k = k_val, data = df_train)
bake(cv_rsample$recipes[[1]], # Get the remaining group

new_data = assessment(cv_rsample$splits[[1]1])) holdout ¢ bake(rec, new_data = assessment(s))

# Get predictions with the holdout data set
res <« predict(mod, newdata = holdout)
# Return observed and predicted values

# on holdout set
res <« tibble(obs = holdout$y, pred = res)
res

res < holdout_results(cv_rsample$splits[[2]],
cv_rsample$recipes[[2]],
k val = 58)

sqrt(sum((res$obs - res$pred)”2)/nrow(res))

# [1] 0.3505
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Putting it all together {rsample} and {recipes}

Let's redo the KNN example, with centering and scaling of the x-feature, by combining {rsample}/{caret} with a recipe.

RMSE ¢ numeric(nrow(hyper_grid))
SE ¢ numeric(nrow(hyper_grid))
for(i in 1:nrow(hyper_grid)){
cv_rsample$results < map2(cv_rsample$splits, cv_rsample$recipes,
holdout _results,
hyper_grid[i, 1)
res < map_dbl(cv_rsample$results,
function(x) mean((x$obs - x$pred)”2))
RMSE[i] <« mean(sqrt(res)) ; SE[i] <« sd(sqrt(res))

}
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Regression models in R and
tidy model output with {broom}




Creating models In R

The formula interface using R's formula rules to specify a symbolic representation of the terms:

e response ~variable, with model_fn referring to the specific model function you want to use, e.g. 1m for linear regression
model_fn(Sale_ Price ~ Gr_Liv_Area, data = ames)

e response ~ variable_1 + variable_2

model_fn(Sale_Price ~ Gr_Liv_Area + Neighborhood, data = ames)

e response ~ variable_1 + variable_2 + their interaction

model_fn(Sale_Price ~ Gr_Liv_Area + Neighborhood + Neighborhood:Gr_Liv_Area, data = ames)

e shorthand for all predictors

model _fn(Sale Price ~ ., data = ames)
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https://cran.r-project.org/doc/manuals/r-release/R-intro.html#Formulae-for-statistical-models

)\

—)

Your turn

You will now fit some linear regression models on the ames housing data.

You will explore the model fits with base R instructions as well as the functionalities offered
by the {broom} package.

0: load the ames housing data set via ames ¢« AmesHousing::make_ames()

1. Fit a linear regression model with Sale_Price as response and Gr_Liv_Area as covariate.
Store the resulting object as model_1.

2. Repeat your instruction, but now put it between brackets. What happens?
3. Inspect model_1 with the following set of instructions

e summary(__ )

e extract the fitted coefficients, using ___$coefficients
e what happens with summary(___)$coefficients ?

e extract fitted values, using ___$fitted.values

« now try to extract the R? of this model.
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0.1 Linear model with sale_Price as a function of Gr_Live_ Area

model 1 ¢« 1m(Sale Price ~ Gr_Liv_Area, data = ames)

0.3 Check model_1 - What happens - do you like this display?

summary(model_1)

Now let's extract some meaningful information from model 1 (using base R instructions)

model _1$coefficients head(model 1$fitted.values)

## (Intercept) Gr_Liv_Area tH# 1 2 3 A 5 6
HH 13289.6 111.7 #H 198255 113367 161731 248964 195239 192447
summary(model_1)$coefficients summary(model_1)$r.squared

H Estimate Std. Error t value Pr(>|tl|) ## [1] 0.4995

## (Intercept) 13289.6 3269.703 4,064 4.941e-05

#H Gr_Liv_Area 111.7 2.066 54.061 0.000e+00
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Tidy model output

The package {broom} allows to summarize key information about statistical objects (e.g. a linear regression model) in so-
called tidy tibbles.

This makes it easy to report results, create plots and consistently work with large numbers of models at once.

We briefly illustrate the three essential verbs of {broom}: tidy(), glance() and augment().

model_1 %>% broom:: tidy()

term estimate std.error statistic p.value
(Intercept) 13289.6 3269.703 4.004 0
Gr_Liv_Area 1.7 2.066 54.061 0

model 1 %>% broom:: glance()

rsquared adj.rsquared sigma statistic p.value df logLik AIC BIC deviance dfresidual nobs

0.4995 0.4994 56524 2923 0 1 -36218 72442 72460 9.355e+12 2928 2930
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Tidy model output

The package {broom} allows to summarize key information about statistical objects (e.g. a linear regression model) in so-
called tidy tibbles.

This makes it easy to report results, create plots and consistently work with large numbers of models at once.

We briefly illustrate the three essential verbs of broom: tidy(), glance() and augment().

model_1 %>% broom::augment() %>% slice(1:5)

Sale_Price Gr_Liv_Area .fitted .resid .hat .sigma .cooksd .std.resid

215000 1656 198255 16745 4e-04 56533 0 0.2963
105000 896 11336/ -8367 8e-04 56534 0 -0.1481
172000 1329 161731 10269 4e-04 56534 0 01817
244000 2110 248964 -4964 8e-04 56534 0 -0.0879
189900 1629 195239 -5339 4e-04 56534 0 -0.0945
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g Im_1 ¢« ggplot(data = ames, g Im_ 2 <« model_1 %>% broom::augment() %>%

aes(Gr_Liv_Area, Sale Price)) + ggplot(aes(Gr_Liv_Area, Sale_Price)) +
theme bw() + theme _bw() +
geom_point(size = 1, alpha = 0.3) + geom_point(size = 1, alpha = 0.3) +
geom_smooth(se = TRUE, method = "Im") + geom_line(aes(y = .fitted), col = KULbg) +
#scale_y continuous(labels = scales::dollar) + #scale_y continuous(labels = scales::dollar) +
ggtitle("Regression with AMES housing data") ggtitle("Regression with AMES housing data")

g lm_1 g lm_2

Regression with AMES housing data

Regression with AMES housing data

6e+05 6e+054

ice

ice

4e+05 4

4e+054

Sale_Pri
Sale_Pri

2e+054 2e+054

0e+00 4

0e+00 4

1000 2000 3000 4000 5000 1000 2000 3000 4000 5000
Gr_Liv_Area Gr_Liv_Area
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Generalized Linear Models
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Linear and Generalized Linear Models

- With linear regression models 1m(.)

Bjisen Joharssan

e model specification
Non-Life Insurance

Pricing _
with Generalized = B + €.
Linear Models

e € is normally distributed with mean 0 and common variance o’

thus: ¥ is normal with mean z 3 and variance o2
With generalized linear regression models gim(.)

e model specification

Generalized
Linear Models for ,

Insurance Data g(E[YV]) =z S.

Petie jong and
Glllianz Heller

-

ARk e g(.) is the link function

o 1 follows a distribution from the exponential family.

104 / 156



Motor Third Party Liability data

We will use the Motor Third Party Liability data set. There are 163,231 policyholders in this data set.

The frequency of claiming (nclaims ) and corresponding severity (avg, the amount paid on average per claim reported by a
policyholder) are the target variables in this data set.

Predictor variables are:

the exposure-to-risk, the duration of the insurance coverage (max. 1 year)

factor variables, e.g. gender, coverage, fuel

continuous, numeric variables, e.g. age of the policyholder, age of the car

spatial information: postal code (in Belgium) of the municipality where the policyholder resides.

More details in Henckaerts et al. (2018, Scandinavian Actuarial Journal) and Henckaerts et al. (2020, North American Actuarial
Journal).
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Motor Third Party Liability data

ggplot2

You can load the data from the data folder as follows:

# install.packages("rstudioapi")
dir < dirname(rstudioapi:: getActiveDocumentContext()$path)
setwd(dir)
mtpl_orig ¢« read.table('../data/PC_data.txt',
header = TRUE,
stringsAsFactors = TRUE)
mtpl_orig <« as_tibble(mtpl_orig)

Alternatively, you can also go for:

# install.packages("here")

dir < here::here()

setwd(dir)

mtpl_orig <« read.table('../data/PC_data.txt',
header = TRUE,
stringsAsFactors = TRUE)

mtpl_orig <« as_tibble(mtpl_orig)

Some basic exploratory steps with this data follow on the next sheet.
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Motor Third Party Liability data

Note that the data mtpl_orig uses capitals for the variable names

mtpl_orig %>% slice(1:3) %>% dplyr::select(-LONG, -LAT)

ID NCLAIMS AMOUNT AVG EXP COVERAGE FUEL USE FLEET SEX AGEPH BM AGEC POWER PC TOWN

1 1 1618 1618 1 TPL gasoline private N male 50 5 12 77 1000 BRUSSEL
2 0 0 NA 1 PO gasoline private N female 64 5 3 66 1000 BRUSSEL
3 0 0 NA 1 TPL diesel  private N male 60 O 10 70 1000 BRUSSEL

We change this to lower case variables, and rename exp to expo.

mtpl < mtpl_orig %>% rename_all(tolower) %>% rename(expo = exp)

names(mtpl)

#H [1] "id" "nclaims" "amount" "*avg" "expo" "coverage"
#H [7] "fuel" "use" "fleet" "sex" "ageph" “"bm"

#H [13] "agec" "power" "“pc” "town" "long" "lat"
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dim(mtpl)

#H [1] 163231 18

mtpl %>%
summarize(emp_freq = sum(nclaims) / sum(expo))

emp_freq

01393

mtpl %>%
group_by(sex) %>%
summarize(emp_freq = sum(nclaims) / sum(expo))

sex emp_freq
female 01484

male 01361

g < ggplot(mtpl, aes(nclaims)) + theme_bw() +
geom_bar(aes(weight = expo),
alpha = .5, col = KULbg, fill =
labs(y = "Abs freqg (in exposure)") +
ggtitle("MTPL - number of claims")

KULbg) +

(« G >

MTPL - number of claims

1e+05

Abs freq (in exposure)

5e+04 1

0e+00

0 2 4
nclaims
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To get warmed up, let's load the mtpl data and do some basic investigations into the
variables. The idea is to get a feel for the data.

YOu Y tu n Q: you will work through the following exploratory steps.

1. Visualize the distribution of the ageph with a histogram.

2. For each age recorded in the data set mtpl: what is the total number of observations, the
total exposure, and the corresponding total number of claims reported?

3. Calculate the empirical claim frequency, per unit of exposure, for each age and picture it.
Discuss this figure.

4. Repeat the above for bm, the level occupied by the policyholder in the Belgian bonus-
malus scale.
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0.1 a histogram of ageph 0.2 for each ageph recorded

ggplot(data = mtpl, aes(ageph)) + theme_ bw() + mtpl %>%
geom_histogram(binwidth = 2, alpha = .5, group_by(ageph) %>%
col = KULbg, fill = KULbg) + summarize(tot_claims = sum(nclaims),
labs(y = "Absolute frequency") + tot_expo = sum(expo),
ggtitle("MTPL - age policyholder") tot_obs = n())
MTPL - age policyholder .
ageph tot_claims tot_expo tot_obs
18 5 4,622 16
- 19 28 93.022 116
5 20 M3 342.285 393
21 165 597389 701
22 202  778.827 952
23 297 1165.359 1379
24 426  1752.249 2028

25 50 75
ageph
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Q.3 for each ageph recorded

freq_by _age < mtpl %>%
group_by(ageph) %>%
summarize(emp_freq = sum(nclaims) / sum(expo))

ggplot(data = freq_by_age,
aes(x = ageph, y = emp_freq)) + theme_bw() +
geom_bar(stat = 'identity', alpha = .5,
color = KULbg, fill = KULbg) +
ggtitle('MTPL - empirical claim freq per
age policyholder"')

0.4 recycle the above instructions and replace ageph with
bm

0.94

emp_freq

0.3

0.04

MTPL - empirical claim freq per
age policyholder

T
25

T
50

ageph

T
75
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Generalized Linear Models (GLMs)

Modeling claim frequency and severity in the mtpl data set.

Target variable nclaims (frequency) ..and avg (severity).

MTPL - number of claims

00000

Abs freq (in exposure)
P

00000

20000

10000
claim severity

nclaims

Suitable distributions: Poisson, Negative Binomial. Suitable distributions: log-normal, gamma.
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A Poisson GLM

Fit a Poisson GLM, with logarithmic link function.

freq_glm_1 <« glm(nclaims ~ sex, offset = log(expo),
family = poisson(link = "log"),
data = mtpl) This implies:
~ Poisson, with
!
log(E[Y]) = = f,
or,

E[Y] = exp (2 B).

Fit this model on data = mtpl.
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A Poisson GLM (cont.)

freg_glm_1 <« glm(nclaims ~ sex, offset = log(expo), Use nclaims as
family = poisson(link = "log"),
data = mtpl) Use gender as the only (factor) variable in the linear
predictor.

Include log(expo) as an offset term in the linear predictor.
Then,

2 3 = log (expo) + Bo + Bil(male).
Put otherwise,

E[V] = expo - exp (Bp + Pil(male)),

where expo refers to expo the exposure variable.
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freq_glm_1 « glm(nclaims ~ sex, offset = log(expo),
family = poisson(link = "log"),
data = mtpl)

freg_glm_1 %>% broom:: tidy()

term estimate std.error statistic p.value
(Intercept) -1.9076 0.0133 -143186 0
sexmale -0.0866 0.0157  -5.523 0

Mind the specification of type.predict when using
augment with a GLM!

freq_glm_1 %>% broom::augment(type.predict = "response
4 G >

nclaims sex fitted
1 male 01361

0 female 01484

The predict function of a GLM object offers 3 options:

"link", "response" Or "terms".

The same options hold when augment() is applied to a
GLM object.

Let's see how the fitted values at "response" level are
constructed:

exp(coef(freq_glm 1)[1])

## (Intercept)

HH 0.1484

exp(coef(freq_glm_1)[1] + coef(freq_glm _1)[2])
## (Intercept)

HH 0.1361

Do you recognize these numbers?
Last step:

try freq_glm_1 %>% glance() or summary(freq_glm_1) for
deviances.
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Your turn

You will further explore GLMs in R with the gim(.) function.

Q: continue with the freq_glm_1 object that was created, you will now explicitly call the
predict() function on this object.

1. Verify the arguments of predict.glm using ? predict.glm.

2. The help reveals the following structure predict(.object, .newdata, type = ("..."))

where .object is the fitted GLM object, .newdata is (optionally) a data frame to look for
the features used in the model, and type IS "link", "response" Or "terms".

Use predict with freq_glm_1 and a newly created data frame.
Explore the different options for type, and their connections.

3. Fit a gamma GLM for avg (the claim severity) with log link.
Use sex as the only variable in the model. What do you conclude?
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0.1 You can access the documentation via ? predict.glm.

0.2 You create new data frames (or tibbles) as follows

male_driver <« data.frame(expo = 1, sex = "male")
female_driver <« data.frame(expo = 1, sex = "female")

Next, you apply predict with the GLM object freq_glm_1
and one of these data frames, e.g.

predict(freq_glm_1, newdata = male_driver,
type = "response")

Iy 1
#H 0.1361164

0.2 Next, you apply predict with the GLM object
freq_glm_1 and one of these data frames, e.g.

predict(freq_glm_1, newdata = male_driver,
type = "response")

i 1
H 0.1361164

At the level of the linear predictor:

predict(freq_glm_1, newdata = male_driver,
type = "link")

H 1
tHt -1.994245

exp(predict(freq_glm_1, newdata = male_driver,
type = "link"))

H 1
tH 0.1361164
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0.3 For the gamma regression model

sev_glm 1 « glm(avg ~ sex, family = Gamma(link = "log"), data = mtpl)

sev_glm_1

HH

## Call: glm(formula = avg ~ sex, family = Gamma(link = "log"), data = mtpl)
HH

#H Coefficilents:

## (Intercept) sexmale

HH 7.5730 -0.2581

HH

## Degrees of Freedom: 18294 Total (i.e. Null); 18293 Residual
## (144936 observations deleted due to missingness)

#Ht Null Deviance: 46690

#H Residual Deviance: 46440 AIC: 299700
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Generalized Additive Models with {mgcv}
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Generalized Additive Models (GAMs)

With GLMs glm(.)

Generalized e transformation of the mean modelled with a linear predictor
Additive
Models /

z
T.J. Hastie and . . .
R.J. Tibshirani » not well suited for continuous risk factors that relate to the
response in a non-linear way.

With Generalized Additive Models (GAMs)

Texts in Statistical Science

s et e the predictor allows for smooth effects of continuous risk factors
oo and spatial covariates, next to the linear terms, e.g.
© 6+ ) fi(z;) + f(lat, long)
J

Simon N. Wood

e predictor is still additive

« preferred R package is {mgcv} by Simon Wood.
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A Poisson GAM

We continue working with mtpl and now focus on ageph. We will now explore four different model specifications:

1. ageph as linear effect in glm

2. ageph as factor variable in glm

0.94

3. ageph split manually into bins using cut, then used
as factor in glm

emp_freq

4. a smooth effect of ageph In mgcv:: gam.

Let's go!

0.3

Grid of observed ageph values

a <« min(mtpl$ageph):max(mtpl$ageph)

0.0

T T T
25 50 75
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Model 1: linear effect of ageph

freq_glm_age <« glm(nclaims ~ ageph,
offset = log(expo),
data = mtpl,
family = poisson(link = "log"))
pred_glm _age <« predict(freq_glm_age,
newdata = data.frame(ageph = a, expo = 1),
type = "terms", se.fit = TRUE)
b _glm _age < pred _glm age$fit
1 _glm_age « pred _glm age$fit
- gnorm(0.975)xpred_glm_age$se.fit
u_glm age « pred _glm age$fit
+ gnorm(0.975)xpred_glm_age$se.fit
df < data.frame(a, b_glm age, 1 _glm_age, u_glm age)

fit

0.5

0.01

-0.5+

T T T
25 50 75
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Model 2: ageph as factor variable in glm

freq_glm_age f <« glm(nclaims ~ as.factor(ageph),
offset = log(expo),
data = mtpl,
family = poisson(link = "log"))
pred glm age f <« predict(freq_glm age f,
newdata = data.frame(ageph = a, expo = 1),
type = "terms", se.fit = TRUE)
b _glm_age f <« pred glm_age f$fit
1 _glm_age f « pred_glm age f$fit
- gnorm(0.975)*pred_glm_age f$se.fit
u_glm_age f <« pred glm_age f$fit
+ gqnorm(0.975)*pred_glm_age f$se.fit
df < data.frame(a, b_glm_age f,
1 _glm_age f, u_glm_age f)

0.5

fit

0.01

-0.5+

T T T
25 50 75
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Model 3: ageph split into 5-year bins and then used in glm

level « seqg(min(mtpl$ageph), max(mtpl$ageph), by = 5)
freq_glm_age c <« glm(nclaims ~ cut(ageph, level), .
offset = log(expo),
data = mtpl,
family = poisson(link = "log"))
pred glm age c <« predict(freq_glm age c,
newdata = data.frame(ageph = a, expo = 1),
type = "terms", se.fit = TRUE)
b _glm age ¢ « pred _glm_age c$fit
1 _glm_age c <« pred_glm _age c$fit
- gnorm(0.975)*pred_glm_age_c$se.fit
u_glm age c <« pred_glm_age c$fit
+ gqnorm(0.975)*pred_glm_age c$se.fit
df < data.frame(a, b_glm_age c,
1 _glm_age c, u_glm_age c)

0.54

fit

0.01

-0.54

2I5 5IO 7I5
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Model 4: smooth effect of ageph In mgcv:: gam

library(mgcv)

freq_gam_age <« gam(nclaims ~ s(ageph),
offset = log(expo),
data = mtpl,

family = poisson(link = "log"))

pred_gam_age <« predict(freq_gam_age,

newdata = data.frame(ageph = a, expo = 1),

type = "terms", se.fit = TRUE)
b_gam_age ¢« pred_gam_age$fit
1 _gam_age ¢« pred_gam_age$fit -
gnorm(0.975)xpred_gam age$se.fit
u_gam_age <« pred_gam_age$fit +
gnorm(0.975)xpred_gam _age$se.fit
df < data.frame(a, b_gam_age,
1_gam_age, u_gam_age)

0.54

fit

0.01

-0.54

T
25

T
75
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Model 4 (revisited): picture smooth effect of ageph in mgcv::gam with built-in plot.

library(mgcv)
freq_gam <« gam(nclaims ~ s(ageph), offset = log(expo), family = poisson(link = "log"), data = mtpl)
plot(freq_gam, scheme = 4)

1.0

s(ageph,5.92)
0.5

0.0
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More on GAMs

So, a GAM is a GLM where the linear predictor depends on
smooth functions of covariates.

Consider a GAM with the following predictor:

z B+ filz;).

GAMs use basis functions to estimate the smooth effect

£i(4)
filzs) =) Bimbim(z;),

where the bjn, () are known basis functions and B;y, are
coefficients that have to be estimated.

GAMs avoid overfitting by adding a wiggliness penalty to
the likelihood

2
[ (@) = gisi8;
GAMs then balance goodness-of-fit and wiggliness via
—log L(B, B;) + A; - B;S;B;;

with A; the smoothing parameter.

The smoothing parameter A; controls the trade-off
between fit & smoothness.
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Let's run some experiments to illustrate the effect of the smoothing parameter ( sp = . ), the number (k = . ) and type of
basis functions (bs = . ). We use the mcycle data from {MASS}.

sp=0andk=2 sp=0andk=5 sp=0and k=15

times times times
optimal sp and default k sp = 3 and default k sp = 10 and default k
° g
] 800 (0]
e e @ o0
® o o ° ° ® o0
® > Daswd B o o ° ? ®
(<] @ ® (O)O (¢}
(€]
g ¢° o
(go g Oo
Oo L) (()) g
° Qﬁ’oo%
10 20 30 40 50
times
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Your turn

You will further explore GAMs in R with the gam(.) function from the {mgcv} package.

0: you will combine insights from building glm as well as gam objects by working through the
following coding steps.

1. Fit a gam including some factor variables as well as a smooth effect of ageph and bm.
Visualize the fitted smooth effects.

2. Specify risk profiles of drivers. Calculate their expected annual claim frequency from the

constructed gam.

3. Explain (in words) which profiles would represent high vs low risk according to the
constructed model.
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0.1 examine the following gam fit plot(freq_gam_2, select = 1)

freq_gam 2 <« gam(nclaims ~ sex + fuel + use +
s(ageph) + s(bm),
offset = log(expo), data = mtpl,
family = poisson(link = "log"))

1.0

s(ageph,5.45)
0.5

summary(freq_gam_2)

Family: poisson
Link function: log 2 w0 0 %

Formula:

nclaims ~ sex + fuel + use + s(ageph) + s(bm) plot(freq_gam_2, select = 2)
Parametric coefficients:

Estimate Std. Error =z value Pr(>|z]|)

(Intercept) -1.917790 0.018124 -105.817 <2e-16 o |
sexmale 0.009167 0.016043 0.571 0.5677
fuelgasoline -0.152730 0.015100 -10.114 <2e-16
usework -0.055345 0.033090 -1.673 0.0944

s(bm,8.32)

Signif. codes: 0 '¥*' 0.001 '*x' 0.01 'x' 0.05 '.

Approximate significance of smooth terms: o 130 / 156
edf Ref.df Chi.sg p-value
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0.2 define some risk profiles

drivers ¢« data.frame(expo = c(1, 1, 1),

sex = c("female", "female", "fem:
fuel = c("diesel", "diesel", "die
use = c("private", "private", "p1
ageph = c(18, 45, 65), bm = c(20,
drivers
4 G >

expo sex fuel use ageph bm
1 female diesel private 18 20
1 female diesel private 45 5

1 female diesel private 65 0

Now, you predict the annual expected claim frequency for
these profiles.

predict(freq_gam 2, newdata = drivers,
type = "response")

X
0.4031766

01727503

0.0951317
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Regularized (G)LMs met {glmnet}
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Statistical learning with sparsity

Monographs on Statistics and Applied Probability 143 ?

Statistical Learning W hy

with Sparsity

The Lasso and o o g 2 .

Generalizations e Sort through the mass of information and bring it down to its bare
essentials.

e One form of simplicity is sparsity.

Trevor Hastie
Robert Tibshirani
in Wainwright

e Only a relatively small number of predictors play a role.

How? Automatic feature selection!

The R Series

Hands-On Machine

Learning with R e Fit a model with all p predictors, but constrain or regularize the
coefficient estimates.

e Shrinking the coeffcient estimates can signifcantly reduce their
variance.

Bradley Boehmke
Brandon Greenwell

. « Some types of shrinkage put some of the coefficients exactly

equal to zero!
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Ridge and lasso (least squares) regression

Ridge considers the least-squares optimization problem

2
n b
min yi — Bo — Bix;; | = min RSS
/30713 i—=1 ( ‘ ]:Zl ’ ZJ) /80713

subject to a budget constraint
p
2
g2 <t,
=1

J

i.e.an £9 penalty.

Shrinks the coefficient estimates (not the intercept) to zero.

Lasso considers the least-squares optimization problem

n

2
p
min yi — Bo — Bix;; | = min RSS
ﬂOaﬁ i=1 ( ‘ J:Zl g ZJ) ﬂO?ﬂ

subject to a budget constraint

p
> 18il <t
=1

i.e.an £1 penalty.

Shrinks the coefficient estimates (not the intercept) to zero
and does variable selection!

Lasso is for Least absolute shrinkage and selection
operator.
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Ridge and lasso (least squares) regression (cont.)

The dual problem formulation:

e with ridge penalty:

p
min RSS + )\ 2
ﬂOa:B J_Zl /BJ

e with lasso penalty:

p
min RSS + )\ .
niy 2; B

A is a tuning parameter; use resampling methods to pick a
value!

Both ridge and lasso require centering and scaling of the
features.

’/'_‘_"‘-\-\.

L)

Ellipses (around least-squares solution) represent regions
of constant RSS.

Lasso budget on the left and ridge budget on the right.

Source: James et al. (2021) on An introduction to statistical

learning.
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Regularized GLMs

We now focus on generalizations of linear models and the 19 19 15 8 7 4
lasso.
Minimize
. 1 ‘g
mm_—logﬁ(ﬁo, /Ba Y, X) + )‘HIBHl E
IBOaIB n Q
Here: '
 log L is the log-likelihood of a GLM. - 1 w ! | [ |
-5 -4 -3 -2 -1 0
e 1 is the sample size Log Lambda
e [|B]1 = 521 B; the £1 penalty. The R package {glmnet} fits linear, logistic and multinomial,

Poisson, and Cox regression models.
What happens if:

e A\ — 07

© A= 007 136 / 156



Fit a GLM with lasso regularization in {glmnet}

{slmnet} is a package that fits a generalized linear model via penalized maximum likelihood.

Main function call (with a selection of arguments, see ? glmnet for a complete list)
fit <« glmnet(x, y, family = ., alpha = ., weights = ., offset = ., nlambda = ., standardize = ., intercept = .)

where

x Is the input matrix and y is the response variable

e family the response type, e.g. family = poisson

e weights and offset

e nlambda isthe number of A values, default is 100

e standardize should x be standardized prior to fitting the model sequence?
e intercept should incercept be fitted?

e alpha avalue between 0 and 1, such that the penalty becomes

)=\ Z{ 62+a|/3]|}

Thus, with & = 1 the lasso penalty and a = 0 the ridge penalty results. 137 / 156



A first example of {glmnet}

Following the vignette we start with penalized linear Note that the formula notation y ~ x can not be used with
regression glmnet .
library(glmnet) Some tidy instructions are available for glmnet objects
data(QuickStartExample) (but not all), e.g.
This example loads an input matrix x and vector y of library(broom)
outcomes. The input matrix x Is not standardized yet tidy(fit)
(check this!).
term step estimate lambda dev.ratio
We calibrate a lasso linear regression model
(Intercept) 1 0.6607581 1.630762 0.0000000
At < glmeitie y, Tarily = Tgaussian” (Intercept) 2 0.6312350 1485890 0.0552832
alpha = 1, standardize = TRUE,
intercept = TRUE) (Intercept) 3 0.5874616 1.353887 0.1458910
summary(fit)
(Intercept) 4 0.5475769 1.233612  0.2211153
(Intercept) 5 0.512354 1124021 0.283567/8
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plot(fit, label = TRUE) plot(fit, label = TRUE, xvar = 'lambda')

Coefficients

0 6 7 9 19 19 15 8 7 4
1 1
o | o |
3 3
6 6
{o] {o]
o o
8 8
®
1" (e 1"
.0
10 kS) 19
o | — %g % O _1§ _—
o 8 Q O |§# == = —
15 O 15
w w
Q@ 7] SO
5 5
o | 2
el el
| | | | | | | | | |
0 2 4 6 -5 -4 -3 -2 -1 0
L1 Norm Log Lambda
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plot(fit, xvar

Coefficients

1.0

0.5

0.0

-0.5

-1.0

'dev', label = TRUE)

=

0.0

0.2

| |
04 0.6

Fraction Deviance Explained
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©
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glmnet(x = QuickStartExample$x, y = QuickStar

%Dev

0.
.53
14,
22.
28.
.54
39.
.60
51.
.35
.55
66.
70.
A
76.
78.
80.
82.
.50

5

33

45

57
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84.
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85

~

00

59
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36
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54

87

46

21

57
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15
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Lambda
.63100
. 48600
.35400
.23400
.12400
.02400
.93320
.85030
77470
.70590
.64320
.58610
.53400
. 48660
. 44330
. 40400
.36810
.33540
.30560
.27840
.25370

AN A AN A
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Get estimated coefficients for handpicked value glmnet returns a sequence of models for the users to

choose from, I.e. a model for every lambda .
coef(fit, s = 0.1)

How do we select the most appropriate model?

#H 21 x 1 sparse Matrix of class "dgCMatrix"

i <1 Use cross-validation to pick a lambda value. The default is

#t (Intercept) 0.150928072 10-folds cross-validation.

V1 1.320597195

V2 . cv_fit « cv.glmnet(QuickStartExample$x, QuickStartExan

V3 0.675110234 ) ,
D

V4 .

LEIE -0.817411518 We can pick the lambda that minimizes the cross-

V6 0.521436671 lidat

V7 0.004829335 VIRl S

V8 0.319415917

#H VO ) cv_fit$lambda.min

H V10 . #H [1] 0.07569327

V11 0.142498519

V12 . Or we use the one-standard-error-rule.

V13 .

s W -1.059978762 cv_fit$lambda.lse

iR UL # [1] 0.1593271

V16

V17

VIS : 141/ 156
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We plot the cross-validation error for the inspected grid of 1ambda values.

plot(cv_fit)

Mean-Squared Error

10

20 20

19

19

19

16

1 988 87 776522

-5
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For the selected 1lambda (via cv_fit$lambda.min) we
inspect which parameters are non-zero (on the right).

Now, compare this to the selected variables obtained via
cv_fit$lambda.lse.

coef(fit, s = cv_fit$lambda.min)

TFHEfHFHEE R T HEEEEHEEREH

21 x 1 sparse Matrix of class "dgCMatrix"

(Intercept)
V1
V2
V3
V4
V5
V6
V7
V8
V9
V10
V11l
V12
V13
V14
V15
V16
V17
V18
V19
V20

0.
.33377821

1

sl
14867414

.69787701

.83726751
.54334327
.02668633
.33741131

.17105029

.07552680

.05278699
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The variables vi, v3, v5-8, vi1, Vi4 and v2e are
selected in the regression model.

However, the corresponding estimates (on the left) are
biased, and shrunk to zero.

To remove this bias, we refit the model, only using the
selected variables.

attach(QuickStartExample)

subset « data.frame(y =vy, V1 = x[, 11, Vv3 = x[, 3],
Vs = x[, 51, 6=x[,6]
v7 = x[, 71, = x[, 81,
Vil = x[, 11], Vis = x[, 14],

V20 x[, 20])
final_model « 1m(y ~ V1 + V3 + V5 + V6 + V7 + V8 +
V11l + V14 + V20, data = subset)
final_model %>% broom:: tidy()

What is your judgement about v7 (see coefficients on the
right)?

What do you observe when comparing the estimates below
with those shown on the previous sheet?

term
(Intercept)
V1

V3

V5

V6

V7

V8

V11

V14

V20

estimate

01416891
1.3746695
0.7688247
0.8991610
0.6115910
0.0947279
0.3933822
0.26007/34
-11239616

-11491267

std.error
0.0995658
0.0968211
0.0942568
01033747
0.0900882
0.0972959
0.0920456
0.0994215
0.0885267

01117142

statistic
1.4230704
141980421
81567012
-8.6980793
6./888025
0.9736059
42737767
2.6158659
-12.6963039

-10.2863111

p.value
0.1581730
0.0000000
0.0000000
0.0000000
0.0000000
0.3328618
0.0000477
0.0104367
0.0000000
0.0000000
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{slmnet} and the MTPL data set

Next, we fit a Poisson regression model with lasso Consider different types of coding factor variables.

penalty on the mepl data set. Apply the contrasts function to the variable coverage

The regularization penalty helps us to select the interesting nap(mtpll, c("coverage®)], contrasts

features from the data set. contrasts = FALSE)
## $coverage
glmnet requires the features as input matrix x and the i FO PO TPL
target as a vector vy . HFO 1 0 0
H PO 0 1 0
Recall: HTPL 0 0 1
e mtpl has continuous features (e.g. ageph, bm, power) map(mtpll, c("coverage")], contrasts,

contrasts = TRUE)

e mtpl has factor variables with two levels (e.g. sex, # $coverage
fleet ) HH PO TPL
H FO 0 0

e but also factor variables with more than 2 levels PO 10
# TPL 0 1

( coverage )

What's the difference? 145 [ 156



{slmnet} and the MTPL data set (cont.)

We construct the input matrix for glmnet.

y < mtpl$nclaims

x ¢« model.matrix( ~ coverage + fuel + use + fleet + sex + ageph + bm +
agec + power, data = mtpl,
contrasts.arg = map(mtpl[, c("coverage")], contrasts,
contrasts = FALSE))[,-1]

x[1:10,]

Put the response or outcome variable in y.

In the mtpl data set we build a Poisson model for nclaims .
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{gslmnet} and the MTPL data set (cont.)

We construct the input matrix for glmnet.

y < mtpl$nclaims

x < model.matrix( ~ coverage + fuel + use + fleet + sex + ageph + bm +
agec + power, data = mtpl,
contrasts.arg = map(mtpl[, c("coverage")], contrasts,
contrasts = FALSE))[,-1]

Use model.matrix to create the input matrix x.

We code the factor variable coverage with one-hot-encoding. Here, three dummy variables will be created for the three levels

of coverage.

The other factor variables fuel, use, fleet, sex are dummy coded, with one dummy variable.
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{slmnet} and the MTPL data set (cont.)

We construct the input matrix for glmnet.

y < mtpl$nclaims

x ¢« model.matrix( ~ coverage + fuel + use + fleet + sex + ageph + bm +
agec + power, data = mtpl,
contrasts.arg = map(mtpl[, c("coverage")], contrasts,
contrasts = FALSE))[,-1]

Use model.matrix to create the input matrix x.

We remove the first column, representing the intercept, from the model.matrix.
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{slmnet} and the MTPL data set (cont.)

Let's check the input matrix x

HH coverageFO coveragePO coverageTPL fuelgasoline usework fleetY sexmale ageph
Ho1 0 0 1 1 0 0 1 50
H 2 0 1 0 1 0 0 0 64
H 3 0 0 1 0 0 0 1 60
Ht 4 0 0 1 1 0 0 1 77
Ht 5 0 0 1 1 0 0 0 28
Ht 6 0 0 1 1 0 0 1 26
HH bm agec power
H 1 5 12 77
#H 2 5 3 66
H 3 0 10 70
H 4 0 15 57
H S 9 7 70
H o6 11 12 70

You are now ready to fit a regularized Poisson GLM for y with input x.

Let's go!
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» You will fit a regularized Poisson GLM on the mtpl data with the {glmnet} package.

Q: using the constructed y and x

Your tu rn 1. Fita glmnet with lasso penalty and store the fitted object in mtpl_glmnet . Use the

following arguments family = "poisson", offset = ___
2. Display the order of the variables and their names via row.names(mtpl_glmnet$beta) .
3. Plot the solutions path. Pick a meaningful value for lambda via cross-validation.

4. Which variables are selected in the lasso model? As a last step, you will fit a Poisson GLM
with the selected variables. What do you see?

5. List some pros and cons of the above strategy.
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01 fit a regularized Poisson GLM 0.3 plot the solutions path

alpha « 1 # for lasso penalty plot(mtpl_glmnet, xvar = 'lambda', label = TRUE)

mtpl_glmnet < glmnet(x = x, y = v,
family = "poisson",
offset = log(mtpl$expo), 10 9 8 6 4 2 0
alpha = alpha, g' ' ' ' ' ' '
standardize = TRUE, 8 _
intercept = TRUE) °

0.2 display the variables via s s

row.names(mtpl_glmnet$beta) § S

#H [1] "coverageFO" "coveragePO" "coverageTPL" "i S

#H [6] "fleetY" "sexmale" "ageph" "t - ’

## [11] "power" =

(< G > 6

Log Lambda
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0.3 pick a value for lambda coef(mtpl_glmnet_cv, s = "lambda.min")

#H 12 x 1 sparse Matrix of class "dgCMatrix"
set.seed(123) tHt s1
fold_id ¢« sample(rep(1:10, length.out = nrow(mtpl)), ## (Intercept) -2.106680932

nrow(mtpl)) # coverageFO  -0.006499730
mtpl_glmnet_cv ¢« cv.glmnet(x, y, family = "poisson", #Ht coveragePO
alpha = alpha, #H# coverageTPL 0.050002173
nfolds = 10, # fuelgasoline -0.165864612
foldid = fold_id, t#Ht usework ~0.069292342
type.measure = "deviance", #H fleetY -0.049283838
standardize = TRUE, tHt sexmale -0.013718073
intercept = TRUE) #Ht ageph -0.006347490
plot(mtpl_glmnet _cv) #Ht bm 0.058564280
p N #Ht agec -0.002004356
tH power 0.003448081

10 10 10 10 9 9 7 7 6 5 5 4 4 4 3 2 2 1 1 1

0550
e
e
e
e

P

0.545

[
e
[ ]
e
e
e
[ ]
e

e

0.540
I

e

T
-9 -8 7 -6 5 4
Log(%)
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0.3 pick a value for lambda

set.seed(123)

fold_id « sample(rep(1:10, length.out = nrow(mtpl)),
nrow(mtpl))
mtpl_glmnet_cv ¢« cv.glmnet(x, y, family = "poisson",
alpha = alpha,
nfolds = 10,
foldid = fold_id,
type.measure = "deviance",
standardize = TRUE,
intercept = TRUE)
plot(mtpl_glmnet _cv)
>

<

0.550

10 10 10 10 9 9 7 7 6 5 5 4 4 4 3 2 2 1 1 1

0.545
I

0.540
I

coef(mtpl_glmnet_cv, s = "lambda.lse")
12 x 1 sparse Matrix of class "dgCMatrix"

THEEFTEEHERHEEREEE

sl
(Intercept) -2.124039910
coverageFO
coveragePO
coverageTlPL
fuelgasoline
usework
fleetY
sexmale .
ageph -0.002916928
bm 0.046163778
agec
power
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0.4 refit the models using only the selected features

mtpl$coverage « relevel(mtpl$coverage, "PO")

mtpl_formula_refit < nclaims ~ 1 + coverage +
fuel + use + fleet + sex +
ageph + bm + agec + power

mtpl_glm_refit <« glm(mtpl_formula_refit,

data = mtpl,
offset = log(mtpl$expo),
family = poisson())

The selection obtained via lambda.min

term
(Intercept)
coveragefO
coverageTPL
fuelgasoline
usework
fleetY
sexmale
ageph

bm

agec

power

estimate
-1.9892872
0.0044293
0.0743796

-0.1731052

-0.0862841
-0.1226498
-0.0253198

-0.0074262

0.0639249

-0.0004698

0.0038535

std.error
0.0401325
0.0244274
0.0172363
0.0153266
0.0334470
0.0435289
0.0162468
0.0005391
0.0017328
0.0019368

0.0003799

statistic
-49.5679730
01813238
4.3152799
-11.2944557
-2.5797233
-2.8176618
-1.5584505
-13.7764864
36.8902457
-0.2425874

10.1421096

p.value
0.0000000
0.8561134
0.0000159
0.0000000
0.0098880
0.0048375
0.1191265
0.0000000
0.0000000
0.8083251

0.0000000

154 [ 156



0.4 refit the models using only the selected features The selection obtained via lambda.1se

mtpl_formula_refit_2 <« nclaims ~ 1 + ageph + bm term estimate std.error statistic p.value
mtpl_glm_refit 2 <« glm(mtpl_formula_refit 2,
data = mtpl, (Intercept) -1.8251292 0.0282345 -64.64189 0
offset = log(mtpl$expo),
family = poisson()) ageph  -0.0083839 0.0005274 -15.89605 0

bm 0.0625774 0.0017141 36.50764 0
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Thanks!

Slides created with the R package xaringan.

Course material available via

O https://github.com/katrienantonio/hands-on-machine-learning-R-module-1
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