
Bias, fairness and discrimination-free insurance pricing

Katrien Antonio
LRisk - KU Leuven and ASE - University of Amsterdam

September 22, 2022

www.lrisk.be
https://ase.uva.nl/


My personal website: https://katrienantonio.github.io

https://katrienantonio.github.io


This workshop’s mission is threefold 3

We aim to:

(1) demystify the (exploding) literature on fair machine learning

(2) explore in- and post-processing methods to establish fairness or to remove discrimination
by proxy in insurance pricing

(3) with GLM (∼ statistical learning) and GBM (∼ machine learning) based pricing methods.



A widely expanding literature 4
In machine learning . . .
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In machine learning . . .

(Picture taken from A. Charpentier, presentation on Sept 9, see here.)

http://freakonometrics.free.fr/slides/slides_dialog_2022.pdf


A widely expanding literature 6
. . . and in actuarial science!

“Insurance is particularly interesting because the entire industry is based on discrimina-
tion. Here, we use the word discrimination in an entirely neutral way, taking it to mean
the act of treating different groups differently. (. . .) The modern-day insurance industry
is founded on the ability to differentiate, or discriminate, among risks, known as risk
classification.” (Frees & Huang, 2021, NAAJ)

In fact, insurers discriminate among customers via a diverse set of actions, e.g.:

• the decision to insure

• the coverage offered

• by charing different prices.



A widely expanding literature 7
. . . and in actuarial science!

▶ Frees & Huang (2021, NAAJ) argue how the meaning of actuarial fairness or fair
insurance systems, may depend on:

• historical context, with a shift of responsibility from individual to a pool

• the nature of the pool, e.g. a mutual company vs a stock insurance company

• whether the insurance product can be viewed as a social or type of public good, or not.

▶ Today, I will interpret actuarial fairness as a pricing system where each customer should
pay a premium proportional to their own risk.



A selection of references 8

Sources I used to put this workshop together:

• Mehrabi et al. (2022), A survey on bias and fairness in machine learning, ACM Computing
Surveys

• Caton & Haas (2021), Fairness in machine learning: a survey

• E. Frees & F. Huang (2021), The discriminating (pricing) actuary, North American
Actuarial Journal

• M. Lindholm, R. Richman, A. Tsanakas & M. Wüthrich (2022), Discrimination-free
insurance pricing, ASTIN Bulletin

• A. Charpentier (2022), Insurance: discrimination, biases and fairness, Institut Louis
Bachelier

https://arxiv.org/abs/1908.09635
https://arxiv.org/abs/2010.04053
https://www.tandfonline.com/doi/full/10.1080/10920277.2021.1951296
https://www.cambridge.org/core/journals/astin-bulletin-journal-of-the-iaa/article/discriminationfree-insurance-pricing/ED25C4053690E56050F437B8DF2AD117
https://www.cambridge.org/core/journals/astin-bulletin-journal-of-the-iaa/article/discriminationfree-insurance-pricing/ED25C4053690E56050F437B8DF2AD117
https://www.institutlouisbachelier.org/en/pdf-reader/?pid=81252


Fairness 9

“In the context of decision-making fairness is the absence of any prejudice or favoritism
toward an individual or group based on their inherent or acquired characteristics.
Thus, an unfair algorithm is one whose decisions are skewed toward a particular group of
people.” (Mehrabi et al., 2019)

Mehrabi et al. (2019) identify two potential sources of unfairness:

• from biases in the data

• from the learning algorithms.



Bias 10

“Bias can exist in many shapes and forms, some of which can lead to unfairness in different
downstream learning tasks.” (Mehrabi et al., 2019)

Most important sources of bias discussed in the literature: from

• data to algorithm, e.g. measurement bias or omitted variable bias

• algorithm to user, e.g. algorithmic bias where bias is not present in the data but purely
added by the algorithm

• user to data, e.g. when data are user-generated, any inherent biases in users might be
reflected in the data they generate.



Discrimination 11
Different notions

▶ Explainable discrimination

• when differences in treatment and outcomes amongst different groups can be justified and
explained via some (acceptable, non-protected) attributes.

▶ Direct discrimination

• when protected attributes of individuals explicitly result in non-favorable outcomes toward
them.

▶ Indirect discrimination

• individuals appear to be treated based on seemingly neutral and non-protected attributes

• however, protected groups, or individuals still get to be treated unjustly as a result of implicit
effects from their protected attributes.



Discrimination 12
Indirect discrimination: by proxy and disparate impact

▶ Proxy discrimination:

• arises from correlation between protected and unprotected characteristics

• the implicit ability to infer protected characteristics from other (legitimately used) policyholder
features

• e.g. geographic area serves as a substitute for a protected variable such as race, or proxy
produced by an AI that summarizes the effects of many variables.

▶ Disparate impact:

• a systematic disadvantage resulting for a group that is protected by a nondiscrimination
provision.



Discrimination 13
Protected features?

“Grouping, or classifying, insureds into homogeneous categories for the purposes of risk
sharing is at the heart of the insurance function. Many variables that insurers use are
seemingly innocuous (e.g., blindness for auto insurance), yet others can be viewed as wrong
(e.g., religious affiliation), unfair (e.g., onset of cancer for health insurance), sensitive (e.g.,
marital status), or mysterious (e.g., Artificial Intelligence produced).” (Frees & Huang,
2021, NAAJ)

Protected variables:

• not permitted in risk classification

• their choice is a normative one, after societal debate with many actors.



Discrimination 14
Protected or sensitive features?

(Picture taken from A. Charpentier, report on Insurance: discrimination, biases and fairness, see here.)

https://www.institutlouisbachelier.org/en/insurance-discrimination-biases-fairness/


Discrimination 15
Sensitive features?

Structure to identify whether or not a variable contains sensitive information, from Frees &
Huang (2021), inspired by Avraham (2018) and Prince and Schwarcz (2020):

Property Explanation

Control If a policyholder has control over a certain characteristic, e.g. Type of car, it is deemed appropriate to use for risk classification.

Mutability A variable for which the value changes over time is considered to be fair,

as individuals have the chance to be on the winning and losing side during their lifetime. An example is the variable Age.

Causality When there is a proven causal connection between the variable and the insured event,

it is fair to use the variable for risk classification. Note that a lot of research needs to be done to conform causality.

Statistical discrimination If a variable makes no significant contribution to the predictive accuracy it is best not to use it.

Limiting or reversing A variable used to preserve a historical negative stereotype is deemed unfair.

the effects of past discrimination

Inhibiting socially A variable that, when used to classify risks, will hinder socially desirable behaviour is considered as an unfair variable.

valuable behaviour



Fairness criteria and metrics 16

A multitude of fairness criteria and corresponding metrics has been proposed in the ML
literature, almost exclusively linked to classification problems (with target Y being 0 or 1).

A selection: (with Y the target, Ŷ the prediction and D the protected feature)

• demographic or statistical parity:

a predictor Ŷ satisfies demographic parity if P(Ŷ | D = 0) = P(Ŷ | D = 1)

• equal opportunity:

a predictor Ŷ satisfies equal opportunity with respect to protected attribute D and
outcome Y , if P(Ŷ = 1 | D = 0, Y = 1) = P(Ŷ = 1 | D = 1, Y = 1). Thus, equal true
positive rates for protected and unprotected groups.

See e.g. http://research.google.com/bigpicture/attacking-discrimination-in-ml/ for visuals and https://developers.google.com/machine-learning/glossary/fairness

for detailed illustrations and definitions.

http://research.google.com/bigpicture/attacking-discrimination-in-ml/
https://developers.google.com/machine-learning/glossary/fairness


Fairness criteria and metrics 17

A multitude of fairness criteria and corresponding metrics has been proposed in the ML
literature, almost exclusively linked to classification problems (with target Y being 0 or 1).

A selection:

• fairness through awareness:

an algorithm is fair if it gives similar predictions to similar individuals

• fairness through unawareness:

an algorithm is fair as long as any protected attributes D are not explicitly used in the
decision-making process.



Fairness criteria and metrics 18

Some reflections:

• very much focused on classification problems!

• impossible to satisfy some of these fairness conditions simultaneously, except in some very
special cases.

• users must decide on where to place emphasis, but be mindful of the trade off between any
fairness measure and model accuracy.



Mitigation strategies 19
Methods for fair machine learning

(Picture taken from Caton & Haas, see here.)

https://arxiv.org/abs/2010.04053


Mitigation strategies 20
Methods for fair machine learning

With pre-processing:

• transform the data with the aim to remove bias/discrimination from the training data

• then fit a learning model on the repaired data

With in-processing: (∼ Marchi, Antonio, et al., 2022, ongoing)

• try to find a balance between multiple model objectives, e.g. accuracy and fairness

With post-processing: (∼ Lindholm et al., 2022, ASTIN)

• apply transformations to model output to improve prediction fairness

• only needs access to the predictions and sensitive attribute information.



Fair pricing via regularization 21

In ongoing research with Marchi (KU Leuven), Avanzi and Zhou (Uni of Melbourne), we aim to
establish fair insurance pricing via regularization (∼ Lasso)

min
wh

{
n∑

i=1

L(hwh
(xi ), yi ) + λ · Φ(hwh

, {xi}ni=1, {yi}ni=1, {di}ni=1)

}
. (1)

where the data are (xi , yi , di ) ∈ X n ×Yn ×Dn, a generic loss function L : R2 → R, a predictive
model hwh

∈ F and a fairness criterion Φ : F × X n × Yn ×Dn → R.

Hence, the goal is to balance accuracy (via L) and fairness (via Φ).



XXX 22

Let’s dive into:

Discrimination-free insurance pricing, by M. Lindholm, R. Richman, A. Tsanakas & M.
Wüthrich (2022, ASTIN Bulletin)

with reproducible example in Python prepared by Lorenzo Marchi and Katrien Antonio,
accessible via a Google Colab

further explored in the MSc thesis of Elien Baeten (KU Leuven) and Remco Bruinsma
(UvA).

https://www.cambridge.org/core/journals/astin-bulletin-journal-of-the-iaa/article/discriminationfree-insurance-pricing/ED25C4053690E56050F437B8DF2AD117
https://colab.research.google.com/drive/1-lYL_q8prfakOCTQSucHS7vh9HI7YRmq?usp=sharing


Aims 23

Lindholm et al. (2022):

• propose a post-processing pricing adjustment formula that explicitly addresses
discrimination by proxy

• with the goal to remove indirect discrimination – if it happens to exist – from insurance
pricing models

• purely reason from an actuarial rather than a legal perspective

• assume knowledge of a policyholder’s discriminatory features.

No connection with fairness, or a metric to express fairness. In fact, open discussion going on
the connection between insurance pricing and notions of fairness.

https://arxiv.org/abs/2209.00858


Motivating example 24
From Baeten (2021), inspired by Lindholm et al. (2022)

ni ,j Small Large Row total

Female 83 14 97
Male 47 60 107
Column total 130 74 204

Table: Fictional claim counts.

ei ,j Small Large Row total

Female 567 83 650
Male 269 253 522
Column total 836 336 1172

Table: Fictional exposures.

Here:

• i ∈ {0, 1} refers to Gender with i = 1 a male driver

• j ∈ {0, 1} refers to Type of car with j = 1 a large car.



Motivating example 25
From Baeten (2021), inspired by Lindholm et al. (2022)

Let us focus on the following set of questions:

• how to estimate the overall expected claim frequency, say λ̂, in this portfolio?

• what is λ̂ij when risks are classified using both Gender and Type of car?

• what if prices can not discriminate based on Gender, hence: Gender is a protected feature?



Motivating example 26
From Baeten (2021), inspired by Lindholm et al. (2022)

Overall expected claim frequency:

λ̂ =

∑
i ,j ni ,j∑
i ,j ei ,j

=
n•
e•

=
204

1 172
= 0.174.

Price discrimination, or risk classification, using both Gender and Type of car leads to
best-estimate prices:

λ̂i ,j Small Large

Female 0.146 0.169
Male 0.175 0.237

where, for instance, λ̂0,0 =
83
567 = 0.146. Try to summarize some findings here!



Motivating example 27
From Baeten (2021), inspired by Lindholm et al. (2022)

Some initial observations:

• claim frequencies higher for men than for women

• male drivers with a large car are high risk

• claim frequencies higher for large car drivers compared to small cars.



Motivating example 28
From Baeten (2021), inspired by Lindholm et al. (2022)

Now we treat Gender as a protected feature, and proceed by simply ignoring the variable in
the pricing:

λ̂•,j =
n•,j
e•,j

=
n0,j + n1,j
e0,j + e1,j

with j ∈ {0, 1}

which results in

λ̂•,0 =
130

836
= 0.156 for a Small car

λ̂•,1 =
74

336
= 0.220 for a Large car.

These prices adhere to the unawareness principle and are called unawareness prices.

Are these prices truly not discriminating based on Gender?



Motivating example 29
From Baeten (2021), inspired by Lindholm et al. (2022)

Type of car is very informative for Gender in our example.

Indeed,

P̂(Male | Large) =
e1,1

e0,1 + e1,1
=

253

336
= 0.75

P̂(Male | Small) =
e1,0

e0,0 + e1,0
=

269

836
= 0.32.

Thus, higher propensity of drivers with a Large car to be Male drivers.

At portfolio level, P̂(Male) = 522
1 172 = 0.45 and P̂(Female) = 650

1 172 = 0.55.



Indirect discrimination 30
Motivating example, from Baeten (2021), inspired by Lindholm et al. (2022)

In fact, the unawareness price λ̂•,1 for a driver of a Large car can be rewritten as:

λ̂•,1 =
n0,1 + n1,1
e0,1 + e1,1

=
n0,1
e0,1

· e0,1
e0,1 + e1,1

+
n1,1
e1,1

· e1,1
e0,1 + e1,1

= λ̂0,1 ·
e0,1

e0,1 + e1,1
+ λ̂1,1 ·

e1,1
e0,1 + e1,1

= λ̂0,1 · P̂(Female | Large) + λ̂1,1 · P̂(Male | Large)
= 0.169 · 0.25 + 0.237 · 0.75
= 0.22.

Not only information about the influence of Type of car on producing a claim is used, but
also about the propensity of drivers with a specific Type to be male or female.

The correlation between Type of car and Gender is exploited.



Motivating example 31
From Baeten (2021), inspired by Lindholm et al. (2022)

Similarly, the unawareness price λ̂•,0 for a driver of a Small car becomes:

λ̂•,0 =
n0,0 + n1,0
e0,0 + e1,0

=
n0,0
e0,0

· e0,0
e0,0 + e1,0

+
n1,0
e1,0

· e1,0
e0,0 + e1,0

= λ̂0,0 ·
e0,0

e0,0 + e1,0
+ λ̂1,0 ·

e1,0
e0,0 + e1,0

= λ̂0,0 · P̂(Female | Small) + λ̂1,0 · P̂(Male | Small)

= 0.146 · 0.678 + 0.175 · 0.322
= 0.156.



Motivating example 32
From Baeten (2021), inspired by Lindholm et al. (2022)

We see the potential for indirect discrimination reflected in the unawareness price.

Indeed, in our example:

• men cause on average more claims than women

• in the sub-population of Large car drivers men are more prevalent, compared to the
Gender composition at portfolio level

• hence, the unawareness price for Large is leveraged, and vice versa for Small car drivers.



Motivating example 33
From Baeten (2021), inspired by Lindholm et al. (2022)

Lindholm et al. (2022) replace the conditional probabilities by unconditional probabilities to
obtain a discrimination-free price:

λ̂DF
•,j = λ̂0,j · P̂(Female) + λ̂1,j · P̂(Male).

The discrimination-free expected claim frequencies for Small and Large car drives then becomes:

λ̂DF
•,0 = 0.146 · 0.55 + 0.175 · 0.45 = 0.168 > λ̂•,0 = 0.156

λ̂DF
•,1 = 0.169 · 0.55 + 0.237 · 0.45 = 0.199 < λ̂•,1 = 0.22.

Note: the resulting price list still discriminates on the basis of Type of car (as it should do).



Motivating example 34
From Baeten (2021), inspired by Lindholm et al. (2022)

The best estimate and unawareness prices in this example are unbiased.

Indeed, assume claim cost is 1 EUR, then at portfolio level:∑
i ,j

λ̂i ,j · ei ,j = 567 · 0.146 + 83 · 0.169 + 269 · 0.175 + 253 · 0.237 = 204.

and ∑
j

λ̂•,j · e•,j = 836 · 0.156 + 336 · 0.22 = 204.

Thus, at portfolio level, the total premium volume (here: expected claim counts) equals the
observed total loss (here: observed claim counts).



Motivating example 35
From Baeten (2021), inspired by Lindholm et al. (2022)

However, the discrimination-free prices imply a bias at portfolio level. Indeed,

λ̂DF
•,0 · (e0,0 + e1,0) + λ̂DF

•,1 · (e0,1 + e1,1) = 0.168 · 836 + 0.199 · 336 = 207.3 > 204.

To de-bias, one option is to adjust P̂(Female) and P̂(Male) so that portfolio bias is removed.

In our example, choose P̂⋆(Female) = 0.65 and P̂⋆(Male) = 0.35, then

λ̂DF⋆
•,0 = 0.162 · 0.65 + 0.175 · 0.35 = 0.167

λ̂DF⋆
•,1 = 0.169 · 0.65 + 0.237 · 0.35 = 0.193,

and at portfolio level

λ̂DF⋆
•,0 · (e0,0 + e1,0) + λ̂DF⋆

•,1 · (e0,1 + e1,1) = 0.167 · 836 + 0.193 ≈ 204.



Pricing formulas 36
Lindholm et al., 2022

Let D correspond to some protected (or: sensitive) features and let the non-protected features
be denoted by X .

Let Y denote the target variable of interest, e.g. number of claims or claim sizes.

Lindholm et al. (2022) then consider three pricing formulas:

• the best-estimate price, where both D and X are used

• the unawareness price, simply ignoring D

• the discrimination-free price, where best-estimate prices are averaged over discriminatory
covariates.



Pricing formulas 37
Lindholm et al., 2022 - best-estimate price

The best-estimate price for Y wrt (X ,D) is:

µ(X ,D) := E[Y | X ,D].

Hereby, the price list is

• in general not discrimination-free, unless µ(X ,D) reduces to µ(X ) because of
independence between X and D

• obtained from some predictive model that can use both X and D.



Pricing formulas 38
Lindholm et al., 2022 - unawareness price

The unawareness price for Y wrt (X ) is:

µ(X ) := E[Y | X ].

Hereby, the price list

• attempts at avoiding discrimination by simply ignoring the protected features in D

• may produce indirect discrimination via (D proxied by X )

µ(X ) =

∫
d

µ(X ,d ) dP(D = d | X ),

where the conditional probability enables inference of protected features D via unprotected
features X .



Pricing formulas 39
Lindholm et al., 2022 - discrimination-free price

A discrimination-free price for Y wrt (X ) is:

h∗(X ) :=

∫
d

µ(X ,d ) dP∗(D = d ).

Hereby, the price list

• averages best-estimate prices over discriminatory covariates ∼ P∗(D = d )

• is free of direct discrimination, since h∗(X ) does not explicitly use D

• is free of indirect discrimination, since the possible explanatory power that X may have for
D is removed

• is in general not unbiased.



Omitted-variable bias 40

In fact, the problem that arises with the unawareness prices is referred to in econometrics as
omitted variable bias.

When features X included in a linear regression model are correlated with omitted features Z ,
the X will (partially) proxy for the Z and the estimated regression parameters β will be biased.

For more details:

• Pope & Sydnor (2011) on Implementing Anti-Discrimination Policies in Statistical Profiling
Models in the American Economic Journal: Economic Policy

• our Colab.

https://colab.research.google.com/drive/1-lYL_q8prfakOCTQSucHS7vh9HI7YRmq?usp=sharing


ML for insurance pricing and discrimination-free prices 41
Simulated example

We now demonstrate technical insurance pricing with:

• Generalized Linear Models (GLMs)

• Gradient Boosting Machines (GBMs).

We use the set-up from Lindholm et al. (2022) and consider the best-estimate, the unawareness
and discrimination-free pricing formulas.



Stylized example 42
Set up

Consider three covariates, X1, X2 (unprotected) and D (protected), with

• D ∈ {female,male}

• X1 ∈ {15, ..., 80}, the age of the policyholder

• X2 ∈ {non-smoker, smoker}.

For the P distribution of (X ,D) we assume:

P(D = female) = 0.45

P(X2 = smoker) = 0.3

P(D = female | X2 = smoker) = 0.8.



Stylized example 43
Set up

The example assumes three types of health related claims:

(1) type 1 (related to giving birth)

λ1(X ,D) := exp(α0 + α11{X1∈[20,40]}1{D=female})

(2) type 2 (cancer related)

λ2(X ,D) := exp(β0 + β1X1 + β21{X2=smoker} + β31{D=female})

(3) type 3 (other diseases)

λ3(X ,D) := exp(γ0 + γ1X1).



Stylized example 44
Set up
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Technical prices 45

Let us assume deterministic claim amounts, namely (c1, c2, c3) = (0.5, 0.9, 0.1).

Using these assumptions, the pricing formulas become:

• the best-estimate price

µ(X ,D) = c1λ1(X ,D) + c2λ2(X ,D) + c3λ3(X ,D)

• the unawareness price

µ(X ) =
∑

d∈{female,male}

(c1λ1(X , d) + c2λ2(X , d) + c3λ3(X , d))P(D = d | X )

• a discrimination-free price

h∗(X ) =
∑

d∈{female,male}(c1λ1(X , d) + c2λ2(X , d) + c3λ3(X , d))P(D = d).



Technical prices 46

To calculate the unawareness prices, we use:

P(D = d | X ) =
P(D = d ,X = x)

P(X = x)

=
P(D = d ,X2 = x2)

P(X2 = x2)
,

assuming X1 is independent of (D,X2).



Technical prices 47
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Technical prices 48

Some reflections:

• smokers are charged a higher price than non-smokers, due to a higher expected number of
type 2 claims

• for smokers: unawareness price > discrimination-free price, and vice versa for non-smokers

• if a policyholder indicates to be a smoker, the unawareness price implicitly incorporates the
higher price for women (on type 1 and type 2 claims) because - in this portfolio - smokers
are more likely women

• explore the impact on the unawareness prices when - say -
P(D = female | X2 = smoker) = 0.2 instead of the assumed 0.8.



Generating a data set 49

We obtain the following Gender-Smoking habits probabilities

P(D = female ∩ X2 = smoker) = P(D = female | X2 = smoker) · P(X2 = smoker)

= 0.8 · 0.3 = 0.24

P(D = female ∩ X2 = non-smoker) = 0.21

P(D = male ∩ X2 = smoker) = 0.06

P(D = male ∩ X2 = non-smoker) = 0.49,

using Bayes rule.

We generate 100 000 policyholder records, and distribute their Gender-Smoking habits risk
profiles along this probability distribution.



Generating a data set 50

Age of the policyholder is simulated from a specified probability distribution.

Number of claims per type is sampled from a POI distribution with mean λj (for j = 1, 2, 3).

Excerpt from this data set:

# Gender Smoker Age Type 1 Type 2 Type 3

1 0 0 61 0 0 0
2 1 0 46 0 0 0
3 0 0 68 0 0 0
4 1 0 46 0 0 0
5 0 1 39 0 1 0
6 0 0 70 0 0 1



Estimated prices 51
GLMs

For the best-estimate frequencies, we calibrate three POI GLMs: (for j = 1, 2, 3)

Nj ∼ POI(λj)

λj = exp
(
βj
0 + βj

1X1 + βj
2X2 + βj

3D
)
.

The best-estimate prices then follow from:

µ̂(X ,D) = c1λ̂1(X ,D) + c2λ̂2(X ,D) + c3λ̂3(X ,D),

with the c ’s denoting the (fixed, type-specific) claim amounts.



Estimated prices 52
GLMs

For the unawareness frequencies, we drop the D variable from the linear predictor:

Nj ∼ POI(λj)

λj = exp
(
βj
0 + βj

1X1 + βj
2X2

)
.

For the discrimination-free prices, we average the best-estimate prices over the values of D,
using the empirical probabilities:

ĥ∗(x) =
∑
d

µ̂(x , d)
nd
n
,

with n = 100 000 the sample size.



Estimated prices 53
GLMs
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Estimated prices 54
GLMs
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GBMs

Lindholm et al. (2022) analyze the simulated data set with neural network regression.

We opt for a Gradient Boosting Machine (GBM) (see Henckaerts et al., 2021):

• iteratively combines weak learners into a powerful predictor

• at each iterative step a new tree is fit using information from previously grown trees

• tuning parameters: shrinkage, interaction depth, number of trees, minimum number of
observations in a node and the bag fraction.
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GBMs - estimated frequencies
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GBMs - estimated prices
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GLMs & GBMs - some findings

Comparing the assumed technical prices and the calibrated ones:

• GLM prices are a poor approximation to the true prices, because of difficulties capturing
the highly nonlinear birthing-related effects

• GBMs perform better

• unawareness price discriminates indirectly by learning the gender D from smoking habits
X2.
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Throughout the workshop we

• took a quick tour of the literature on bias and fairness in machine learning

• explored a recently proposed strategy to adjust insurance prices for discrimination by proxy,
when information on protected features is available.
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