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Non-life insurance pricing 101 4

I Denote for policyholder i in a given policy period:

• ei : exposure-to-risk

• Ni : number of claims filed during the exposure period

• Li : total loss amount reported during the exposure period.

I The pure premium πi :

πi = E
[
Li
ei

]
indep.

= E
[
Ni

ei

]
× E

[
Li
Ni
| Ni > 0

]
= Freqi︸ ︷︷ ︸

frequency

× Sevi︸︷︷︸
severity

I Build f (risk factors) to predict frequency and severity, respectively.



Telematics insurance 5

Products: usage-based insurance (UBI)
pay-as-you-drive (PAYD)
pay-how-you-drive (PHYD)

I Telematics is the integrated use of telecommunications and informatics.

I Black-box device is installed in the vehicle.

I Real driving behavior is monitored.

I Very often targets young drivers.



Risk factors for motor insurance pricing 6

Static, demographic dataStatic, demographic data

License age Car make/model Type of fuel Postal code



Risk factors for motor insurance pricing 7

Static, demographic data

telematics technology

Driving habitsDriving habits

Mileage Travel time Time slot Road type



Risk factors for motor insurance pricing 8

Static, demographic data

telematics technology

Driving habits

telematics technology

Driving styleDriving style

Speed Acceleration Attention Weather



Insurance analytics literature on telematics 9

I Verbelen, Antonio & Claeskens (2018, JRSS C):

• claim frequency models with classic, static features and driving habit information

• compositional data and their use in GAMs.

I Wüthrich (2017, EAJ), Gao & Wüthrich (2018, EAJ), Gao et al. (2019, SAJ) and more
papers:

• the construction of v − a heatmaps from GPS signals

• feature-engineering on these heatmaps

• use of these features in claim frequency models.



Insurance analytics literature on telematics 10

I Denuit, Guillen & Trufin (2019, Annals of Actuarial Science) on Multivariate credibility
modelling for usage-based motor insurance pricing with behavioural data.

I Grumiau, Mostoufi, Pavlioglou & Verdonck (2020, Risks) on Address identification using
telematics: an algorithm to identify dwell locations.

I Banghee So, J.-P. Boucher & E. Valdez (2021, Risks) on Synthetic dataset generation
of driver telematics.



Managerial point of view 11

Managerial insights, based on Carbone & Taub (2018) UBI insurance is not usage-based. Sorry,
not sorry!

• In 2017, 14 million policies sent telematics data to insurers around the world.

• However, less than 9 percent of the global insurance telematics policies were characterized
by usage-based pricing.

• Use of driving data in pricing:

∗ use driving score at underwriting stage

∗ propose tailored renewal price (with discounts, or discounts + surcharges)

∗ usage-based, i.e. charge price for period of coverage based on how policyholder behaves during
this period, and avoid premium leakage.

https://www.linkedin.com/pulse/ubi-insurance-usage-based-sorry-matteo-carbone/
https://www.linkedin.com/pulse/ubi-insurance-usage-based-sorry-matteo-carbone/


Research questions 12

Our focus in this talk:

• How to use driving behavior (i.e. habits + style) to update a baseline tariff (with only
self-reported characteristics)?

• What is the added value of telematics for pricing via risk classification?

• Managerial insights? Impact on retention rates, profit?

Focus on frequency, severity and churn models in the presence of static self-reported
characteristics as well as telematics collected data.

Aim for an explainable updating mechanism.



Data and methodology



Motor third party liability (MTPL) portfolio 13

Full portfolio

≈ 400 000 /

year

Young drivers

≈ 9 000 / year

2017 2018 2019

Policy information at the start of the policy period, subject to possible changes during the
policy period (e.g., new vehicle).

Claims reported (68 196 in total).

Driving behavior (only for drivers < 26 years at underwriting time, 308M kilometers driven
in total).



Claims and policy information for the complete portfolio 14
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Policy information with self-reported risk characteristics:

• driver: age, experience, additional young drivers, etc.

• payments: frequency and SEPA indicator

• geographical: postal code and mosaic segment

• vehicle: age, weight, value, power, fuel, make, etc.



Driving behavior information for young drivers 15
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Updating methodology 16

t − 1 t t + 1

Develop Implement

Complete portfolio

With black box

Baseline

Updates π∗(x , z) = π(x)× δπ(z)

Policy (x)

Claims (y)

Telematics (z)

Claims (y)

π(x)

The idea:

• charge baseline tariff π(x) at t

• ex post, multiplicative update δπ(z) at t + 1, based on driving data in [t, t + 1].



Baseline pricing and churn models



Baseline model training 17

I Predictive models for the complete portfolio using traditional features x

• claim frequency and severity → tariff

• customer churn prediction → client retention analysis.

I Stochastic gradient boosting (Friedman, 2002) with the following assumptions:

Distribution Prediction f (x) Loss function D(y , f (x))

Claim frequency N ∼ Poisson E(N | x , e) 2
n

∑n
i=1

[
yi ln

{
yi
fi

}
− {yi − fi}

]
Claim severity L/N ∼ gamma E(L/N | x) 2∑

i Ni

∑n
i=1 Ni

[
yi−fi
fi
− ln

{
yi
fi

}]
Customer churn C ∼ Bernoulli E(C | x) − 1

n

∑n
i=1 [yi ln {fi}+ (1− yi ) ln {fi}]



Baseline model training 18

I Parameter tuning:

H2O random grid search + 5-fold cross-validation (LeDell et al., 2020).

I Enforce the balance property by scaling predictions (for the young drivers):∑n
i=1 fi =

∑n
i=1 yi

automatically fulfilled for GLMs with canonical link

see e.g. Wüthrich (2020).



Insights in the optimal GBMs 19

Claim frequency Claim severity Customer churn

Rank Feature % Feature % Feature %

1 geo postcode 34.72 veh weight 23.21 paym split 43.48
2 driv experience 14.08 veh make 21.37 geo postcode 11.67
3 driv seniority 8.52 geo postcode 10.54 veh age 9.85
4 veh make 6.25 veh segment 10.48 paym sepa 9.44
5 geo mosaic 5.85 geo mosaic 6.59 driv seniority 6.90
6 veh fuel 5.09 driv seniority 5.83 veh make 3.43
7 veh segment 4.66 veh value 3.50 driv experience 2.85
8 paym split 3.91 veh age 3.44 geo mosaic 2.45
9 driv add younger26 3.29 driv experience 2.98 driv age 2.43
10 driv age 2.75 driv add younger26 2.91 veh use 1.99∑

89.12 90.86 94.48



Insights in the optimal GBMs (cont.) 20



Insights in the optimal GBMs 21



Updating pricing with driving behavior



Update baseline premium with telematics 22

I Aim is to update premiums for the drivers with telematics features z .

I Log-link GLM with the baseline prediction ln[f (x)] as an offset:

ln[E(y | x , z)] = ln[f (x)] + β0 +

p∑
j=1

βjzj

E(y | x , z) = f (x)× exp(β0)×
p∏

j=1

exp(βjzj).

I Updated prediction is then multiplicative:

• baseline GBM prediction f (x) for a policyholder with risk characteristics x

• overall update factor exp(β0) via the intercept

• update exp(βjzj) from each telematics feature zj .



Telematics feature selection with LASSO 23
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Update price via the claim frequency component 24

I Let z
∗ ∈ R4 denote {dist yrly, harsh latrl, harsh brake, time night}.

I Log-link Poisson GLM with offset for claim frequency:

ln[E(N | x , z∗)] = ln[E(N | x , e)] + β0 +
4∑

j=1

βj log(z∗j + 1)

E(N | x , z∗) = E(N | x , e)× exp(β0)×
4∏

j=1

(z∗j + 1)βj .

I Updated prediction is multiplicative in the following terms:

• baseline GBM prediction E(N | x , e) for a policyholder with risk characteristics x

• overall discount factor exp(β0) ≈ 2%

• update (z∗j + 1)βj from each telematics feature z∗j .



Multiplicative update effects 25
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I Mileage + discount remains < 1.

I Penalty once night driving, harsh braking or lateral events are registered.

I Safe driving is the key to earn discounts!



Telematics improving risk classification 26

train test
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Here we consider:

• rmi = Fn (f m(x i , z
∗
i )) with Fn(.) the ecdf

• PCm(s) =
∑n

i=1 Ni 1{ s−1
5
<rmi ≤

s
5
}∑n

i=1 Ni
for s ∈ {1, . . . , 5}.



Telematics improving risk classification 27

train test
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Here we consider:

• LCm(s) =
∑n

i=1 Ni 1{rmi ≤s}∑n
i=1 Ni

for s ∈ [0, 1].



Managerial insights



Managerial insights 28

For the discussion of managerial insights, I refer to our paper:

• adjust baseline churn ρ(x) to ρ∗(x , δπ) = ρ(x) + εp · (δπ − 1) = ρ(x) + δρ, with εp the
price elasticity

• study expected profit and retention rate

P =
1

n

n∑
i=1

(1− (ρi + δρi )) · (δπi πi − Li ) R =
1

n

n∑
i=1

1− (ρi + δρi )

• restrict penalties/discounts + redistribute ⇒ fairness, solidarity, commercially
appealing

δπlo ≤ δπ ≤ δπhi
n∑

i=1

(1− ρi ) · πi =
n∑

i=1

(1− ρi ) · α · δπi · πi



Conclusions 29

Our paper puts focus on:

• a baseline pricing model with self-reported characteristics

• an explainable updating mechanism to incorporate driving behavioral information.

Added value of telematics for insurance pricing is studied from both a statistical and managerial
perspective.



More information 30

For more information, please visit:

• draft of the paper, including complete set of references

• LRisk website, www.lrisk.be

• my homepage https://katrienantonio.github.io.

Special thanks to

• the organizers

• the companies and funding agencies supporting/having supported my research lab: Ageas,
Argenta, Atlas Copco, CNP Assurances, FWO, KU Leuven internal funds.

www.lrisk.be
https://katrienantonio.github.io
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Churn updates 31

I Adjust baseline churn via price update δπ and elasticity of demand εp.

I ρ∗(x , δπ) = ρ(x) + εp · (δπ − 1) for ρ(x) = 0.1 and εp ∈ [0, 5]:
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I ρ∗ = ρ when δπ = π∗/π = 1 (no price change).

I Linear increases/decreases (δπ > 1 / δπ < 1) with slope εp.



Profits and retention under solidarity/fairness constraints 32

I Expected profits and retention rates under different scenarios:

70

80

90

0 10 20 30
Profit per customer (Euro)

R
et

en
tio

n 
ra

te
 (

%
)

limit

none

50%

40%

30%

20%

10%

price elasticity εp

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

I Stricter limits result in higher profits

I Profits increase with εp at the cost of lower retention

I No limit results in lower profits than baseline (driven by low premiums on average)



Constrained optimization for profit maximization 33

I Maximize expected profit P while retaining a minimum proportion of the portfolio R∗:

max
α

P(α) =
1

n

n∑
i=1

(1− (ρi + δρi )) · (αδπi πi − Li )

subject toR(α) =
1

n

n∑
i=1

1− (ρi + δρi ) ≥ R∗

δπlo ≤ δπ ≤ δπhi .

I Implicit dependence of R on α as δρ = εp · (αδπ − 1).

I Efficient frontier by varying R∗ over a range of values and maximizing P(R∗) via α.



Efficient frontiers for R∗ ∈ [0.75, 0.9] under different scenarios 34
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