Dynamically updating motor insurance prices with telematics collected driving behavior data

Katrien Antonio

LRisk - KU Leuven and ASE - University of Amsterdam

May 12, 2022

Presenter + **Authors**

Katrien Antonio

Roel Henckaerts

Paper will appear in Insurance: Mathematics and Economics.

Recent work on insurance pricing analytics

[Henckaerts et al., 2021]

[Henckaerts et al., 2022]

[Henckaerts & Antonio, 2022]

IME

SAJ NAAJ

github/henckr/distRforest

Expert Syst. Appl.

github/henckr/maidrr

- ▶ Denote for policyholder *i* in a given policy period:
 - e_i: exposure-to-risk
 - N_i : number of claims filed during the exposure period
 - L_i : total loss amount reported during the exposure period.
- ▶ The pure premium π_i :

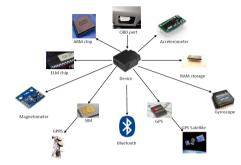
$$\pi_i = \mathbb{E}\left[\frac{L_i}{e_i}\right] \stackrel{indep.}{=} \mathbb{E}\left[\frac{N_i}{e_i}\right] \times \mathbb{E}\left[\frac{L_i}{N_i} \mid N_i > 0\right] = \underbrace{Freq_i}_{\text{frequency}} \times \underbrace{\text{Sev}_i}_{\text{severity}}$$

ightharpoonup Build f(risk factors) to predict frequency and severity, respectively.

Telematics insurance

Products: usage-based insurance (UBI)

pay-as-you-drive (PAYD)
pay-how-you-drive (PHYD)



- ► Telematics is the integrated use of telecommunications and informatics.
- Black-box device is installed in the vehicle.
- ► Real driving behavior is monitored.
- Very often targets young drivers.

Risk factors for motor insurance pricing

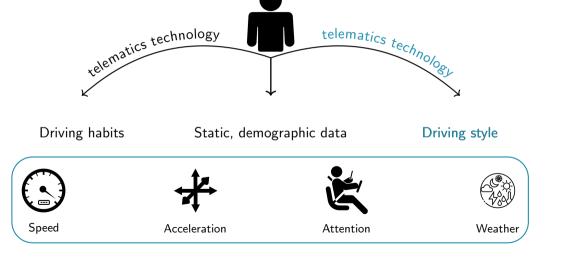
Static, demographic data

Risk factors for motor insurance pricing

Driving habits

Static, demographic data

Risk factors for motor insurance pricing



Insurance analytics literature on telematics

- ▶ Verbelen, Antonio & Claeskens (2018, JRSS C):
 - claim frequency models with classic, static features and driving habit information
 - compositional data and their use in GAMs.
- Wüthrich (2017, EAJ), Gao & Wüthrich (2018, EAJ), Gao et al. (2019, SAJ) and more papers:
 - the construction of v a heatmaps from GPS signals
 - feature-engineering on these heatmaps
 - use of these features in claim frequency models.

Insurance analytics literature on telematics

- ▶ Denuit, Guillen & Trufin (2019, Annals of Actuarial Science) on Multivariate credibility modelling for usage-based motor insurance pricing with behavioural data.
- ► Grumiau, Mostoufi, Pavlioglou & Verdonck (2020, Risks) on Address identification using telematics: an algorithm to identify dwell locations.
- ▶ Banghee So, J.-P. Boucher & E. Valdez (2021, Risks) on Synthetic dataset generation of driver telematics.

Managerial insights, based on Carbone & Taub (2018) UBI insurance is not usage-based. Sorry, not sorry!

- In 2017, 14 million policies sent telematics data to insurers around the world.
- However, less than 9 percent of the global insurance telematics policies were characterized by usage-based pricing.
- Use of driving data in pricing:
 - * use driving score at underwriting stage
 - * propose tailored renewal price (with discounts, or discounts + surcharges)
 - * usage-based, i.e. charge price for period of coverage based on how policyholder behaves during this period, and avoid **premium leakage**.

Our focus in this talk:

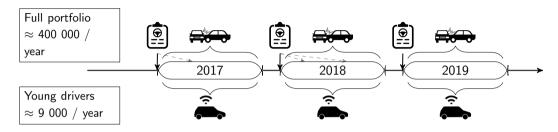
- How to use driving behavior (i.e. habits + style) to update a baseline tariff (with only self-reported characteristics)?
- What is the added value of telematics for pricing via risk classification?
- Managerial insights? Impact on retention rates, profit?

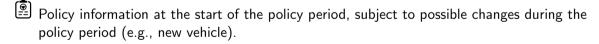
Focus on frequency, severity and churn models in the presence of static self-reported characteristics as well as telematics collected data.

Aim for an explainable updating mechanism.

Data and methodology

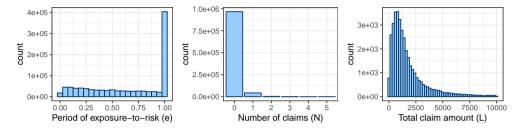
Motor third party liability (MTPL) portfolio





- Claims reported (68 196 in total).
 - Driving behavior (only for drivers < 26 years at underwriting time, 308M kilometers driven in total).

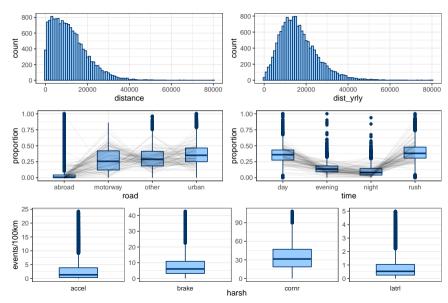
Claims and policy information for the complete portfolio



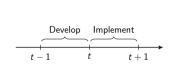
Policy information with self-reported risk characteristics:

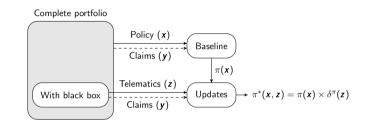
- driver: age, experience, additional young drivers, etc.
- payments: frequency and SEPA indicator
- geographical: postal code and mosaic segment
- vehicle: age, weight, value, power, fuel, make, etc.

Driving behavior information for young drivers



Updating methodology





The idea:

- charge baseline tariff $\pi(x)$ at t
- ex post, multiplicative update $\delta^{\pi}(z)$ at t+1, based on driving data in [t, t+1].

Baseline pricing and churn models

Baseline model training

- ightharpoonup Predictive models for the **complete portfolio** using traditional features x
 - claim frequency and severity → tariff
 - customer churn prediction \rightarrow client **retention** analysis.
- ► Stochastic gradient boosting (Friedman, 2002) with the following assumptions:

	Distribution	Prediction $f(x)$	Loss function $D(y, f(x))$
Claim frequency	$N \sim Poisson$	$\mathbb{E}(\textit{N} \textit{x}, e)$	$\frac{2}{n} \sum_{i=1}^{n} \left[y_i \ln \left\{ \frac{y_i}{f_i} \right\} - \left\{ y_i - f_i \right\} \right]$
Claim severity	$L/N\sim { m gamma}$	$\mathbb{E}(L/N \mid x)$	$\frac{2}{\sum_{i} N_{i}} \sum_{i=1}^{n} N_{i} \left[\frac{y_{i} - f_{i}}{f_{i}} - \ln \left\{ \frac{y_{i}}{f_{i}} \right\} \right]$
Customer churn	$C \sim Bernoulli$	$\mathbb{E}(C \mid x)$	$-\frac{1}{n}\sum_{i=1}^{n} [y_i \ln \{f_i\} + (1-y_i) \ln \{f_i\}]$

Parameter tuning:

H2O random grid search + 5-fold cross-validation (LeDell et al., 2020).

► Enforce the balance property by scaling predictions (for the young drivers):

$$\sum_{i=1}^n f_i = \sum_{i=1}^n y_i$$

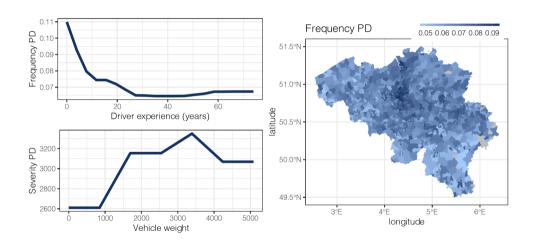
automatically fulfilled for GLMs with canonical link

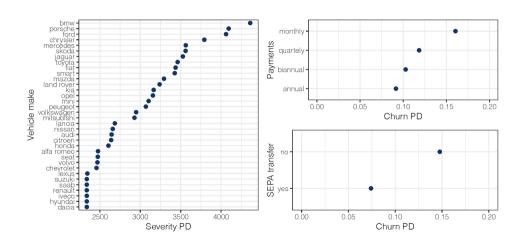
see e.g. Wüthrich (2020).

Insights in the optimal GBMs

	Claim frequency		Claim severity		Customer churn	
Rank	Feature	%	Feature	%	Feature	%
1	geo_postcode	34.72	veh_weight	23.21	paym_split	43.48
2	driv_experience	14.08	veh_make	21.37	geo_postcode	11.67
3	driv_seniority	8.52	geo_postcode	10.54	veh_age	9.85
4	veh_make	6.25	veh_segment	10.48	paym_sepa	9.44
5	geo_mosaic	5.85	geo_mosaic	6.59	driv_seniority	6.90
6	veh_fuel	5.09	driv_seniority	5.83	veh_make	3.43
7	veh_segment	4.66	veh_value	3.50	driv_experience	2.85
8	paym_split	3.91	veh_age	3.44	geo₋mosaic	2.45
9	driv_add_younger26	3.29	driv_experience	2.98	driv_age	2.43
10	driv_age	2.75	driv_add_younger26	2.91	veh_use	1.99
Σ		89.12		90.86		94.48

Insights in the optimal GBMs (cont.)





Updating pricing with driving behavior

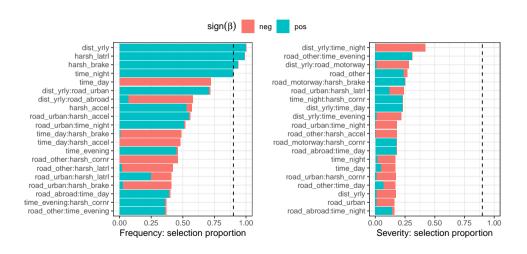
Update baseline premium with telematics

- \triangleright Aim is to update premiums for the drivers with telematics features z.
- ▶ Log-link GLM with the baseline prediction ln[f(x)] as an offset:

$$\ln[\mathbb{E}(y \mid \boldsymbol{x}, \boldsymbol{z})] = \ln[f(\boldsymbol{x})] + \beta_0 + \sum_{j=1}^{p} \beta_j z_j$$

$$\mathbb{E}(y \mid \boldsymbol{x}, \boldsymbol{z}) = f(\boldsymbol{x}) \times \exp(\beta_0) \times \prod_{j=1}^{p} \exp(\beta_j z_j).$$

- Updated prediction is then multiplicative:
 - baseline GBM prediction f(x) for a policyholder with risk characteristics x
 - overall update factor $\exp(\beta_0)$ via the intercept
 - update $\exp(\beta_j z_j)$ from each telematics feature z_j .



Update price via the claim frequency component

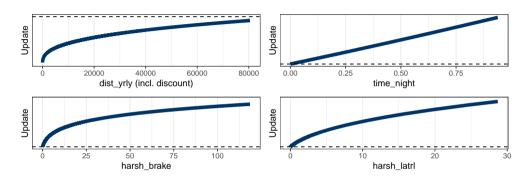
- Let $\mathbf{z}^* \in \mathbb{R}^4$ denote {dist_yrly, harsh_latrl, harsh_brake, time_night}.
- ► Log-link Poisson GLM with offset for claim frequency:

$$\mathsf{In}[\mathbb{E}(\mathit{N}\,|\,oldsymbol{x},oldsymbol{z}^*)] = \mathsf{In}[\mathbb{E}(\mathit{N}\,|\,oldsymbol{x},e)] + eta_0 + \sum_{j=1}^4 eta_j \log(z_j^*+1)$$

$$\mathbb{E}(extstyle extstyle$$

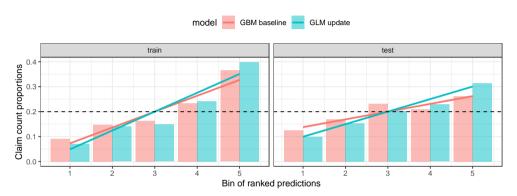
- ▶ Updated prediction is **multiplicative** in the following terms:
 - baseline GBM prediction $\mathbb{E}(N \mid x, e)$ for a policyholder with risk characteristics x
 - overall discount factor $\exp(\beta_0) \approx 2\%$
 - update $(z_i^* + 1)^{\beta_j}$ from each telematics feature z_i^* .

Multiplicative update effects



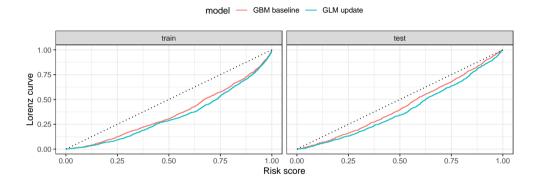
- ▶ Mileage + discount remains < 1.
- ▶ Penalty once night driving, harsh braking or lateral events are registered.
- ▶ Safe driving is the key to earn discounts!

Telematics improving risk classification



Here we consider:

- $r_i^m = F_n(f^m(x_i, z_i^*))$ with $F_n(.)$ the ecdf
- $PC^m(s) = \frac{\sum_{i=1}^n N_i \, \mathbb{1}\{\frac{s-1}{5} < r_i^m \le \frac{s}{5}\}}{\sum_{i=1}^n N_i} \text{ for } s \in \{1, \dots, 5\}.$



Here we consider:

•
$$LC^m(s) = \frac{\sum_{i=1}^n N_i \, \mathbb{I}\{r_i^m \le s\}}{\sum_{i=1}^n N_i} \text{ for } s \in [0,1].$$

Managerial insights

For the discussion of managerial insights, I refer to our paper:

- adjust baseline churn $\rho(\mathbf{x})$ to $\rho^*(\mathbf{x}, \delta^{\pi}) = \rho(\mathbf{x}) + \epsilon_{\rho} \cdot (\delta^{\pi} 1) = \rho(\mathbf{x}) + \delta^{\rho}$, with ϵ_{ρ} the price elasticity
- study expected profit and retention rate

$$P = rac{1}{n} \sum_{i=1}^{n} (1 - (
ho_i + \delta_i^{
ho})) \cdot (\delta_i^{\pi} \pi_i - L_i) \qquad R = rac{1}{n} \sum_{i=1}^{n} 1 - (
ho_i + \delta_i^{
ho})$$

restrict penalties/discounts + redistribute ⇒ fairness, solidarity, commercially appealing

$$\delta_{lo}^{\pi} \leq \delta^{\pi} \leq \delta_{hi}^{\pi}$$

$$\sum_{i=1}^{n} (1 - \rho_i) \cdot \pi_i = \sum_{i=1}^{n} (1 - \rho_i) \cdot \alpha \cdot \delta_i^{\pi} \cdot \pi_i$$

Conclusions 29

Our paper puts focus on:

- a baseline pricing model with self-reported characteristics
- an explainable updating mechanism to incorporate driving behavioral information.

Added value of telematics for insurance pricing is studied from both a statistical and managerial perspective.

More information 30

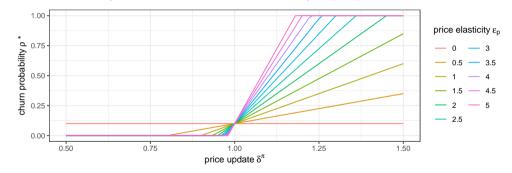
For more information, please visit:

- draft of the paper, including complete set of references
- LRisk website, www.lrisk.be
- my homepage https://katrienantonio.github.io.

Special thanks to

- the organizers
- the companies and funding agencies supporting/having supported my research lab: Ageas, Argenta, Atlas Copco, CNP Assurances, FWO, KU Leuven internal funds.

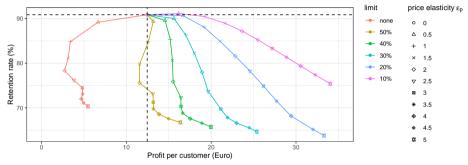
- Adjust baseline churn via price update δ^{π} and elasticity of demand ϵ_{p} .
- $ho^*(\mathbf{x}, \delta^\pi) =
 ho(\mathbf{x}) + \epsilon_{\mathbf{p}} \cdot (\delta^\pi 1)$ for $ho(\mathbf{x}) = 0.1$ and $\epsilon_{\mathbf{p}} \in [0, 5]$:



- $ho^* =
 ho$ when $\delta^{\pi} = \pi^*/\pi = 1$ (no price change).
- ▶ Linear increases/decreases ($\delta^{\pi} > 1 / \delta^{\pi} < 1$) with slope ϵ_{p} .

Profits and retention under solidarity/fairness constraints

Expected profits and retention rates under different scenarios:



- Stricter limits result in higher profits
- \triangleright Profits increase with ϵ_p at the cost of lower retention
- ▶ No limit results in lower profits than baseline (driven by low premiums on average)

ightharpoonup Maximize expected profit P while retaining a minimum proportion of the portfolio R^* :

$$\begin{aligned} \max_{\alpha} P(\alpha) &= \frac{1}{n} \sum_{i=1}^{n} (1 - (\rho_i + \delta_i^{\rho})) \cdot (\alpha \delta_i^{\pi} \pi_i - L_i) \\ \text{subject to } R(\alpha) &= \frac{1}{n} \sum_{i=1}^{n} 1 - (\rho_i + \delta_i^{\rho}) \geq R^* \\ \delta_{lo}^{\pi} &\leq \delta^{\pi} \leq \delta_{hi}^{\pi}. \end{aligned}$$

- ▶ Implicit dependence of R on α as $\delta^{\rho} = \epsilon_{p} \cdot (\alpha \delta^{\pi} 1)$.
- ▶ Efficient frontier by varying R^* over a range of values and maximizing $P(R^*)$ via α .

Efficient frontiers for $R^* \in [0.75, 0.9]$ under different scenarios

