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Non-life insurance pricing 101

» Denote for policyholder i in a given policy period:
« € exposure-to-risk
« N;: number of claims filed during the exposure period

« L;: total loss amount reported during the exposure period.

» The pure premium 7;j:

€

L,' indep. Ni Li
i = E [] dep E [] x E [ | N; > O] = Freq; x Sev;
N; M~ ~~

frequency severity

» Build f(risk factors) to predict frequency and severity, respectively.



Telematics insurance

Products: usage-based insurance (UBI)
pay-as-you-drive (PAYD)
pay-how-you-drive (PHYD)

> Telematics is the integrated use of telecommunications and informatics.
> Black-box device is installed in the vehicle.
» Real driving behavior is monitored.

> Very often targets young drivers.



Risk factors for motor insurance pricing
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Risk factors for motor insurance pricing
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Insurance analytics literature on telematics European

Actuarial Journal

> Verbelen, Antonio & Claeskens (2018, JRSS C):

« claim frequency models with classic, static features and driving habit information

« compositional data and their use in GAMs.

» Withrich (2017, EAJ), Gao & Wiithrich (2018, EAJ), Gao et al. (2019, SAJ) and more
papers:

« the construction of v — a heatmaps from GPS signals
«» feature-engineering on these heatmaps

« use of these features in claim frequency models.



1
Address Identification Using Telematics: An Algorithm
to Identify Dwell Locations

o

Insurance analytics literature on telematics
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» Denuit, Guillen & Trufin (2019, Annals of Actuarial Science) on Multivariate credibility
modelling for usage-based motor insurance pricing with behavioural data.

» Grumiau, Mostoufi, Pavlioglou & Verdonck (2020, Risks) on Address identification using
telematics: an algorithm to identify dwell locations.

> Banghee So, J.-P. Boucher & E. Valdez (2021, Risks) on Synthetic dataset generation
of driver telematics.



Managerial point of view 11

Managerial insights, based on Carbone & Taub (2018) UBI insurance is not usage-based. Sorry,
not sorry!

« In 2017, 14 million policies sent telematics data to insurers around the world.

« However, less than 9 percent of the global insurance telematics policies were characterized
by usage-based pricing.

« Use of driving data in pricing:
« use driving score at underwriting stage

* propose tailored renewal price (with discounts, or discounts + surcharges)

* usage-based, i.e. charge price for period of coverage based on how policyholder behaves during
this period, and avoid premium leakage.


https://www.linkedin.com/pulse/ubi-insurance-usage-based-sorry-matteo-carbone/
https://www.linkedin.com/pulse/ubi-insurance-usage-based-sorry-matteo-carbone/

Research questions 12

Our focus in this talk:

« How to use driving behavior (i.e. habits + style) to update a baseline tariff (with only
self-reported characteristics)?

. What is the added value of telematics for pricing via risk classification?
. Managerial insights? Impact on retention rates, profit?

Focus on frequency, severity and churn models in the presence of static self-reported
characteristics as well as telematics collected data.

Aim for an explainable updating mechanism.



Data and methodology




Motor third party liability (MTPL) portfolio
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Full portfolio - - -
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@] Policy information at the start of the policy period, subject to possible changes during the

policy period (e.g., new vehicle).

&= Claims reported (68 196 in total).

-, Driving behavior (only for drivers < 26 years at underwriting time, 308M kilometers driven

in total).



Claims and policy information for the complete portfolio 14
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Policy information with self-reported risk characteristics:

. driver: age, experience, additional young drivers, etc.
. payments: frequency and SEPA indicator
. geographical: postal code and mosaic segment

. vehicle: age, weight, value, power, fuel, make, etc.



Driving behavior information for young drivers
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Updating methodology

Complete portfolio

Develop  Implement
—_——
t-1 t t+1
With black box m(x,2) = 7(x) x 6™(z)
The idea:

. charge baseline tariff 7(x) at t

. ex post, multiplicative update d™(z) at t + 1, based on driving data in [t, t + 1].

16



Baseline pricing and churn models




Baseline model training 17

> Predictive models for the complete portfolio using traditional features x

® claim frequency and severity — tariff

® customer churn prediction — client retention analysis.

» Stochastic gradient boosting (Friedman, 2002) with the following assumptions:

Distribution Prediction f(x) Loss function D(y, f(x))
i i 25mn . il _r,. _f
Claim frequency N ~ Poisson E(N|x,e) s> [y, In { 7 } {yi f,}}
Claim severity L/N ~ gamma E(L/N|x) ﬁ SN [y";_f" —In {%}]

Customer churn  C ~ Bernoulli E(C|x) —LIs il {f}+ 1 —y)In{f}]

n




Baseline model training

» Parameter tuning:

H20 random grid search + 5-fold cross-validation (LeDell et al., 2020).

> Enforce the balance property by scaling predictions (for the young drivers):

S fi=3 i
automatically fulfilled for GLMs with canonical link

see e.g. Wiithrich (2020).
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Insights in the optimal GBMs

Claim frequency

Claim severity

Customer churn

Rank Feature % Feature % Feature %

1 geo_postcode 34.72 veh_weight 23.21 paym_split 43.48
2 driv_experience 14.08 veh_make 21.37  geo_postcode 11.67
3 driv_seniority 8.52 geo_postcode 10.54 veh_age 9.85
4 veh_make 6.25 veh_segment 10.48 paym_sepa 9.44
5 geo_mosaic 5.85 geo_mosaic 6.59 driv_seniority 6.90
6 veh_fuel 5.09 driv_seniority 5.83 veh_make 3.43
7 veh_segment 4.66 veh_value 3.50 driv_experience  2.85
8 paym_split 3.91 veh_age 3.44 geo_mosaic 2.45
9 driv_add_younger26  3.29 driv_experience 2.98 driv_age 2.43
10 driv_age 2.75  driv_add_younger26  2.91 veh_use 1.99
> 89.12 90.86 94.48




Insights in
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Insights in the optimal GBMs
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Updating pricing with driving behavior




Update baseline premium with telematics 22

> Aim is to update premiums for the drivers with telematics features z.

» Log-link GLM with the baseline prediction In[f(x)] as an offset:

p
n[E(y|x,2)] = In[f(x)]+ 6o+ _ Bz

j=1
P
E(y|x,z) = f(x)xexp(fo) x ][ exp(Biz).
j=1
> Updated prediction is then multiplicative:
« baseline GBM prediction f(x) for a policyholder with risk characteristics x
« overall update factor exp(fy) via the intercept

« update exp(f;jz;) from each telematics feature z;.



Telematics feature selection with LASSO
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Update price via the claim frequency component 24

» Let z* € R* denote {dist_yrly, harsh_latrl, harsh_brake, time night}.

> Log-link Poisson GLM with offset for claim frequency:

4

IN[E(N | x,2*)] = In[E(N | x, )] + fo + Y_ 5 log(z} +1)
j=1

4
E(N|x,z*) = E(N|x,e) x exp(fo) x | |(z + 1)%.
j=1

» Updated prediction is multiplicative in the following terms:
® baseline GBM prediction E(N | x, e) for a policyholder with risk characteristics x

® overall discount factor exp(3o) = 2%

® update (z/ + 1)% from each telematics feature z.



Multiplicative update effects
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» Penalty once night driving, harsh braking or lateral events are registered.

> Safe

driving is the key to earn discounts!
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Telematics improving risk classification

model =~ GBM baseline == GLM update
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Telematics improving risk classification

model — GBM baseline — GLM update

train test

Lorenz curve
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Here we consider:

. LCM(s) = %géfw for s € [0,1].



Managerial insights




Managerial insights 28
For the discussion of managerial insights, | refer to our paper:

. adjust baseline churn p(x) to p*(x,6™) = p(x) + €p - (67 — 1) = p(x) + 6”, with €, the
price elasticity

. study expected profit and retention rate

1< 1<
n;( (p’+5l)) (51 T l) n; (p’+5l)

. restrict penalties/discounts + redistribute = fairness, solidarity, commercially
appealing

T S 57‘(’ S 5;,'("

Z(l—Pi)'Wi = Z(l—p,).a.(s?.m



Conclusions 29

Our paper puts focus on:
. a baseline pricing model with self-reported characteristics
« an explainable updating mechanism to incorporate driving behavioral information.

Added value of telematics for insurance pricing is studied from both a statistical and managerial
perspective.



More information 30

For more information, please visit:
. draft of the paper, including complete set of references
« LRisk website, www.lrisk.be
. my homepage https://katrienantonio.github.io.
Special thanks to
. the organizers

. the companies and funding agencies supporting/having supported my research lab: Ageas,
Argenta, Atlas Copco, CNP Assurances, FWO, KU Leuven internal funds.
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Extra sheets




Churn updates

> Adjust baseline churn via price update 0™ and elasticity of demand ¢p.

> p*(x,07™) = p(x)+¢€p - (6™ — 1) for p(x) = 0.1 and ¢, € [0, 5]:
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churn probability p *
o o
& 3
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price update d"

> p* = p when 6" = 7*/m =1 (no price change).

> Linear increases/decreases (67 > 1 / 6™ < 1) with slope €.

T
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Profits and retention under solidarity/fairness constraints

> Expected profits and retention rates under different scenarios:

Retention rate (%)

0 10 20 30
Profit per customer (Euro)

> Stricter limits result in higher profits

> Profits increase with €, at the cost of lower retention
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» No limit results in lower profits than baseline (driven by low premiums on average)
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Constrained optimization for profit maximization 33

> Maximize expected profit P while retaining a minimum proportion of the portfolio R*:

n

max P(0) =1 > (1~ (1 + 80) - (a5 — L)
i=1

1 n
subject to R(«) = Z 1—(pi+6’)>R*
i=1
o < 6T < 6.

» Implicit dependence of R on « as 6 = ¢, - (ad™ — 1).

> Efficient frontier by varying R* over a range of values and maximizing P(R*) via «.



Efficient frontiers for R* € [0.75,0.9] under different scenarios 34
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