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This keynote’s mission is threefold

To discuss:

(1) specific considerations to keep in mind when using machine learning methods with
frequency/severity data

(2) interpretation and comparison tools for machine learning methods, with a particular focus
on pricing with frequency/severity data, including different types of risk factors

(3) maidrr, our strategy to construct a Model Agnostic Interpretable Data-driven suRRogate.
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Road to Explainable AI (XAI)

▸ An explainable AI (XAI) algorithm enables human users to understand, trust and manage
its decisions.

▸ Matters in highly regulated industries, such as insurance and banking.

▸ Two roads or pathways to XAI:

● after the event: use interpretation tools to (better) understand decision process in black box
model

● by design: develop and use transparent white box model.
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GLMs and GAMs for insurance pricing
Starting point

A data driven binning strategy for the construction of insurance tariff classes by Henckaerts, Antonio, Clijsters and Verbelen

(2018, Scandinavian Actuarial Journal), with GitHub repo.
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Taken from Machine learning for everyone. In simple words. With real-world examples. Yes, again.

https://vas3k.com/blog/machine_learning/


XXX

Let’s dive into:

Boosting insights in insurance tariff plans with tree-based machine learning methods, by
Roel Henckaerts, Marie-Pier Côté, Katrien Antonio and Roel Verbelen (2020, North
American Actuarial Journal),

with reproducible examples in notebooks on GitHub:

● tree-based ML

● severity modeling.
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Regression trees

▸ The process of building a regression tree with CART (Breiman et al., 1984):

1. divide the predictor space into J distinct, non-overlapping regions R1, R2, . . . ,RJ

top-down, greedy strategy with recursive binary splitting

2. for every observation in region Rj we make the same prediction:

the mean of the response values for the training observations in Rj .

▸ The prediction obtained with a regression tree:

ftree(X1, . . . ,Xp) = ȳ1I{X∈R1}
+ . . . + ȳJ I{X∈RJ}

,

where ȳj = ave (yi ∣X i ∈ Rj).
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Regression trees
Tree pruning

▸ Prune a large tree by minimizing:

J

∑
j=1

∑
i ∶ x i∈Rj

L(yi , ŷRj
) + J ⋅ cp ⋅ ∑

i ∶ x i∈R

L(yi , ŷR)

● cp = 0 gives biggest possible tree

● cp = 1 gives root tree without splits.

▸ We employ a tuning strategy and search grid to find the optimal value for cp, e.g. via
cross-validation.
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Regression trees
Example of a frequency tree
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MTPL data set analyzed in Henckaerts et al. (2020, NAAJ).
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Loss functions inspired by GLMs
Frequency

● classic: GLM with count distribution (e.g. Poisson or NegBin)

● ML: use Poisson deviance as loss function

D(y , f̂ (x)) = 2∑n
i=1 (yi ⋅ ln

yi
f̂ (x i)

− (yi − f̂ (x i)))

Severity

● classic: GLM with skewed distribution (e.g. Gamma or LogNorm)

● ML: use Gamma deviance as loss function

D(y , f̂ (x)) = 2∑n
i=1 wi ⋅ (

yi−f̂ (x i)

f̂ (x i)
− ln yi

f̂ (x i)
)
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Bagging

▸ We generate T different bootstrapped data sets {Dt}t=1,...,T from the training data D.

▸ We train our method on the t-th bootstrapped training set and get f̂tree(x ∣Dt). Finally, we
average all the predictions

f̂bagg(x) =
1

T

T

∑
t=1

f̂tree(x ∣Dt).

This is called bootstrap aggregating (or bagging) and goes back to Breiman (1996).

▸ With random forests each time a split in a tree is considered, a at random m out of p
predictors are chosen as split candidates (Breiman, 2001).
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Boosting
Boosting trees

▸ Fitting trees in a forward stagewise procedure, solve:

Θ̂t = arg min
Θt

n

∑
i=1

L(yi , ft−1(x i) + ftree(x ; Θt)),

where Θt = {Rjt ,bjt}
Jt
1 , the regions and fitted values of the tree.

▸ With squared-error loss:

fit a regression tree to the current residuals yi − ft−1(x i).

▸ With other loss functions, this idea generalizes to pseudo-residuals.
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Boosting
The gradient boosting algorithm

▸ The gradient tree-boosting algorithm (Friedman, 2001):

● initializes to the optimal constant model, which is just a single terminal node tree

● fits a small tree of depth d to the pseudo-residuals ρit = −
∂L(yi ,f (xi))

∂f (xi)
evaluated at current

model fit ft−1 (more details in the paper)

● a shrinkage parameter λ controls the learning speed by shrinking updates
fnew(x) = fold(x) + λ ⋅ update.

▸ Stochastic gradient boosting injects randomness in the training process by subsampling the
data at random without replacement in each iteration.
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Tuning and comparison strategy
Stratified sampling on the MTPL data in Henckaerts et al. (2020)
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Interpretation tools

▸ Classical statistical methods are highly interpretable:

● coefficients in a GLM

● smooth effects in a GAM.

▸ Not the case for machine learning methods:

3 regression trees

7 random forests

7 boosted trees.

▸ There is a need for interpretation tools: look under the hood!
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Interpretation tools
PDPs

▸ (Univariate) Partial Dependence Plots (PDPs) to interpret the marginal effect of a feature
on the outcome

f̄`(x`) =
1

n

n

∑
i=1

fmodel(x`,x
i
−`).

▸ Global measure such that interaction effects can stay hidden.
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Interpretation tools
PDPs
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Interpretation tools
PDPs
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Interpretation tools
ICEs

▸ Individual conditional expectation plots (ICEs)

f̃`,i(x`) = fmodel(x`,x
i
−`).

▸ ICEs show the effect of a variable on an individual level:

● to picture the uncertainty of the effect of a variable on the prediction outcome

● to detect interaction effects.
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Interpretation tools
ICEs
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The gray lines are ICEs for 1000 random policyholders and the blue line shows the partial
dependence curve.
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Hunting for interaction effects

Friedman’s H-statistic:

H2
k` =
∑

n
i=1{f̄kl(x

(i)
k , x

(i)
` ) − f̄k(x

(i)
k ) − f̄l(x

(i)
` )}

2

∑
n
i=1 f̄

2
kl(x

(i)
k , x

(i)
` )

.

Variables H-statistic Variables H-statistic Variables H-statistic

(lat, long) 0.2687 (agec, coverage) 0.1185 (bm, power) 0.0800
(fuel, power) 0.1666 (ageph, power) 0.1062 (ageph, lat) 0.0799
(agec, power) 0.1319 (ageph, bm) 0.0961 (agec, ageph) 0.0785
(ageph, sex) 0.1293 (power, sex) 0.0829 (long, sex) 0.0732
(coverage, long) 0.1203 (fuel, long) 0.0828 (agec, bm) 0.0678
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PDPs to picture interaction effects
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Model comparison tools
Findings: out-of-sample
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Conclusion:

● Poisson deviance for frequency: GBM > GLM > RF > CART

● gamma deviance for severity: GBM ≈ GLM ≈ RF ≈ CART.
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Model comparison tools
Findings: model lift

▸ We combine frequency and severity into a (technical) tariff or risk premium.

▸ We compare the GLM, GAM, decision tree, random forest and GBM constructed tariffs.

▸ Managerial tools:

● total loss vs. total premiums

● loss ratio lift, double lift, Gini index.

▸ Conclusion: GBM > GLM > RF > CART.
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maidrr: Model-Agnostic Interpretable Data-driven suRRogate

How about using the GBM to inform feature engineering for a GLM?

In fact, the GBM could be replaced by any ML method (RF, NN, etc.).

We developed maidrr, see the working paper on arxiv by Henckaerts, Antonio and Côté.
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maidrr: Model-Agnostic Interpretable Data-driven suRRogate

Black box Model insights Segmentation Surrogate

PD DP GLM

(1) group values of feature xj based on univariate PD f̄j(xj) ⇒ use dynamic programming
(DP) algo for clustering

(2) find relevant interactions xa and xb based on H-statistic

(3) cluster similar f̄a,b(xa, xb) ⇒ use DP

(4) fit GLM on segmented features.
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maidrr: Model-Agnostic Interpretable Data-driven suRRogate
Some technical details

Values of feature xj with a similar PD show a similar relation to the prediction target

● group values/levels of xj based on the univariate PD f̄j(xj)

● let mj denote the unique number of observed values for xj

● let xj ,q denote its qth value for q ∈ {1, . . . ,mj} and define zj ,q = f̄j(xj ,q)

● allocate elements of mj dimensional input vector to kj clusters by minimizing within-cluster
sum of squares.

Adjacency constraints can be imposed (e.g. for ordinal variables).
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maidrr: Model-Agnostic Interpretable Data-driven suRRogate
Some technical details (cont.)

We choose the number of groups (kj) for feature xj via a penalized loss function:

1

mj

mj

∑
q=1

(zj ,q − z̃j ,q)
2
+ λmarg ⋅ log(kj)

with z̃j ,q the average PD effect for the group to which value/level xj ,q belongs.

λmarg is a tuning parameter, independent of j .
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maidrr: Model-Agnostic Interpretable Data-driven suRRogate
Some technical details (cont.)

The interaction between features xa and xb is captured by subtracting both one-dimensional
PDs from the two-dimensional PD:

f̄a,b(xa, xb) =
1

n

n

∑
i=1

fpred(xa, xb,x
i
−a,−b) −

1

n

n

∑
i=1
∑

`∈{a,b}

fpred(x`,x
i
−`).

DP algorithm without adjacency constraint allows to cluster similar f̄a,b(xa, xb) values.

Optimal number of groups is again chosen using a penalized loss, with separate tuning
parameter λintr for the interaction effects.
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Comparison tools
Other surrogates, accuracy, local interpretations

The paper reports our findings on a benchmark study with 6 insurance data sets.

Decision tree (DT) surrogate

● original data as features and the GBM predictions as target

● maximum tree depth restricted to four.

Linear model (LM) surrogate

● original data as features and the GBM predictions as target.
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Comparison tools
Other surrogates, accuracy, local interpretations

ausprivauto bemtpl frempl fremtpl norauto pricingame avg.

GLM 0.10 0.49 1.80 0.92 0.03 0.48 0.64
LM 0.22 1.15 18.39 6.35 0.07 2.53 4.79
DT 0.25 1.68 4.82 2.66 0.28 2.13 1.97

∆DPoi
= 100 × (DPoi

{y , fsurro(x)}/D
Poi
{y , fgbm(x)} − 1) .
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Comparison tools
Other surrogates, accuracy, local interpretations

ausprivauto bemtpl frempl fremtpl norauto pricingame avg.

GLM 0.86 0.94 0.91 0.78 0.99 0.93 0.90
LM 0.89 0.83 0.62 0.30 0.95 0.88 0.75
DT 0.75 0.74 0.88 0.75 0.84 0.76 0.78

R2
= 1 −

∑
n
i=1 {fsurro(x i) − fgbm(x i)}

2

∑
n
i=1 {fgbm(x i) − µgbm}

2
.
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Comparison tools
Other surrogates, accuracy, local interpretations
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(Provocative) Statement & Thanks!
The mindset of the actuary - research ambition

The narrative must be that actuaries are entering the data science world not entirely to
compete but also to bring the element of the actuarial profession where we build integrity
and transparency into any work that we do, and how documentation of that is possible.

Quote from What data science means for the future of the actuarial profession, British
Actuarial Journal, June 2018.
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R packages

R packages developed by Roel Henckaerts (as part of his PhD):

● for distRforest see https://henckr.github.io/distRforest/

● for maidrr see https://henckr.github.io/maidrr
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References and acknowledgements

▸ For detailed list of references, please consult the papers.

▸ Visuals are from

Machine learning for everyone. In simple words. With real-world examples. Yes, again.

▸ More interpretation tools available in the (online) book by Christophe Molnar, see
https://christophm.github.io/interpretable-ml-book/.
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Appendix
Regularized GLMs for insurance pricing

Sparse Regression with MUlti-type Regularized Feature modelling by Devriendt, Antonio,
Reynkens & Verbelen (2020, Insurance: Mathematics and Economics)

● automatic feature selection and binning of risk factors via regularization (i.e. lasso and
friends)

● R package smurf on CRAN

● end product is a GLM!
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Appendix
GLMs and GAMs for telematics insurance pricing

Unravelling the predictive power of telematics data in car insurance pricing by Verbelen,
Antonio & Claeskens (2018, JRSS C)

● black box collected data on group of young drivers

● compositional data (‘parts of a whole’) on kilometers driven across road types, time slots

● GAMs for claim frequencies, with specific attention to effects of compositional data and
interpretation.
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Appendix
Gradient Boosting Machines (GBMs)
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Appendix
Tuning and hyper-parameters

Tuning parameters Hyper-parameters

Regression tree
complexity parameter cp κ = 0.01

coefficient of variation gamma prior γ

Random forest
number of trees T cp = 0 γ = 0.25

number of split candidates m κ = 0.01 δ = 0.75

Gradient boosting machine
number of trees T λ = 0.01

tree depth d κ = 0.01 δ = 0.75
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Appendix
maidrr algorithm in pseudo code
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