
Demystifying neural networks and their use in
actuarial tasks

AG-AI Winter School
Katrien Antonio
December 14, 2022

Based on (ongoing) work with Roel Henckaerts, PhD and Freek Holvoet, MSc

Why this topic?

Learning outcomes

de-mystify neural networks in light of increasing literature on the use of neural nets in actuarial science

develop foundations of working with (different types of) neural networks

focus on the use of neural networks for the analysis of claim frequency + severity data, also in combination with
GLMs or tree-based ML models

discuss how to evaluate and interpret neural networks

step from simple networks (for regression) to more complex types of networks (e.g., convolutional neural networks) (if
time permits).

2 / 65

This presentation is based on

Michael A. Nielsen (2015) Neural networks and deep
learning

the work of prof. Taylor Arnold, in particular Chapter 8
in the book A computational approach to statistical
learning by Arnold, Kane & Lewis (2019)

Boehmke (2020) on Deep Learning with R: using Keras
with TensorFlow backend.

Actuarial modelling with neural nets is covered in (among
others)

Wüthrich & Buser (2020) Data analytics for non-life
insurance pricing, in particular Chapter 5

Wüthrich (2019) From Generalized Linear Models to
neural networks, and back

Wüthrich & Merz (2019) Editorial: Yes, we CANN!, in
ASTIN Bulletin 49/1

Denuit, Hainaut & Trufin (2019) Effective Statistical
Learning Methods for Actuaries: Neural Networks and
Extensions, Springer Actuarial Lecture Notes

A series of (working) papers covering the use of neural
nets in insurance pricing (classic, and with telematics
collected data), mortality forecasting, reserving, ...

Want to read more?

3 / 65

http://neuralnetworksanddeeplearning.com/
https://www.routledge.com/A-Computational-Approach-to-Statistical-Learning/Arnold-Kane-Lewis/p/book/9780367570613
https://github.com/rstudio-conf-2020/dl-keras-tf
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2870308
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3491790
https://www.cambridge.org/core/journals/astin-bulletin-journal-of-the-iaa/article/editorial-yes-we-cann/66E8BEC373B5CCEF3BF3303D442D6B75
https://www.springer.com/gp/book/9783030258269

Getting started

Unpacking our toolbox
Tensors

De-mystifying neural networks

What's in a name?
A simple neural network

Neural network architecture

An architecture with layers in {keras}

Network compilation

Loss function and forward pass
Gradient descent and backpropagation

Regression with neural networks

Redefining GLMs as a neural network
Including exposure
Case study

Outlook to convolutional neural networks

What else is there?

Conclusions

Outline

4 / 65

Some roadmaps to explore the ML landscape...

Source: Machine Learning for Everyone In simple words. With real-world examples. Yes, again.

5 / 65

https://vas3k.com/blog/machine_learning/

Getting started

6 / 65

What's the excitement about?

 Neural networks are an exciting topic to explore, because:

They are a biologically-inspired programming paradigm that enables a computer to learn from data.

Deep learning is a powerful set of techniques for learning in neural networks.

Neural networks and deep learning provide best-in-class solutions to many problems in image recognition, speech
recognition and natural language processing.

The universal approximation theorem (Hornik et al., 1989; Cybenko, 1989) states that neural networks with a single
hidden layer can be used to approximate any continuous function to any desired precision.

7 / 65

An accessible programming framework

R:
With interface to Keras and TensorFlow.

Keras:
An inuitive high level Python interface to TensorFlow.

TensorFlow:
Open source platform for machine learning developed by the Google Brain Team, see https://www.tensorflow.org/.
Special focus on training deep neural networks.

8 / 65

https://www.tensorflow.org/

Why is this thing called TensorFlow?
A scalar is a single number, or a 0D tensor, i.e. zero dimensional:

age_car = 5 , fuel = gasoline , bm = 10

In tensor parlance a scalar has 0 axes.

In a big data world with structured and unstructured data, our input can be a

a single time series: 1-dimensional, with 1 axis

a sound fragment: 2-dimensional, with 2 axes

an image in color: 3-dimensional, with 3 axes

a movie: 4-dimensional, with 4 axes

...

We require a framework that can flexibly adjust to all these data structures!

9 / 65

Why is this thing called TensorFlow? (cont.)
TensorFlow is this flexible framework which consists of highly optimized functions based on tensors.

What is a tensor?

A 1-dimensional tensor is a vector (e.g. closing daily stock price during 250 days)

A 2-dimensional tensor is a matrix (e.g. a tabular data set with observations and features)

...

Tensors generalize vectors and matrices to an arbitrary number of dimensions.

Many matrix operations, such as the matrix product, can be generalized to tensors.

Luckily Keras provides a high level interface to TensorFlow, such that we will have only minimal exposure to tensors and the
complicated math behind them. 10 / 65

Let's picture a stock price dataset where

each minute we record the current price, lowest price
and highest price
a trading day has 390 minutes and a trading year has
250 days.

Then, one year of data can then be stored in a 3D tensor
(samples, timesteps, features) , here: (250, 390, 3) .

Source: Bradley Boehmke

Example of a 3D tensor

11 / 65

https://github.com/rstudio-conf-2020/dl-keras-tf

Let's picture an image data set where

each image has a specific height and width
three color channels (Red, Green, Blue) are registered
multiple images (samples) are stored.

Then, a collection of images can be stored in a 4D tensor
(samples, height, width, channels) .

Source: Bradley Boehmke

Example of a 4D tensor

12 / 65

https://github.com/rstudio-conf-2020/dl-keras-tf

Let's picture a video data set where

each video sample is one minute long and has a
number of frames per second (e.g. 4 frames per
second)
each frame has a specific height (e.g. 256 pixels) and
width (e.g. 144 pixels)
three color channels (Red, Green, Blue)
multiple images (samples) are stored.

Then, a collection of images can be stored in a 5D tensor
(samples, frames, height, width, channels) which
becomes here (samples, 240, 256, 144, 3) .

Source: Bradley Boehmke

Example of a 5D tensor

13 / 65

https://github.com/rstudio-conf-2020/dl-keras-tf

De-mystifying neural networks

14 / 65

Different types of neural networks and their applications:

ANN: Artificial Neural Network
for regression and classification problems, with vectors
as input data

CNN: Convolutional Neural Network
for image processing, image/face/... recognition, with
images as input data

RNN: Recurrent Neural Network
for sequential data such as text or time series

... and many more!

What's in a name?

15 / 65

De-mystify artificial neural networks (ANNs):

a collection of inter-woven linear models
extending linear approaches to detect non-linear
interactions in high-dimensional data.

See the picture on the right.

Goal: predict a scalar response from scalar input .
Some terminology:

 is the input layer
 is the output layer, to predict

middle layer is a hidden layer
four neurons: , , and .

A simple neural network

y x

x

v y

x z1 z2 v

16 / 65

First, we apply two independent linear models:

using four parameters: two intercepts and two slopes.

Next, we construct another linear model with the as
inputs:

Putting it all together:

Model is over-parametrized, with infinitely many ways to
describe the same model.

Essentially, still a linear model!

A simple neural network (cont.)

z1 = b1 + x ⋅ w1

z2 = b2 + x ⋅ w2

zj

ŷ := v = b3 + z1 ⋅ u1 + z2 ⋅ u2.

v = b3 + z1 ⋅ u1 + z2 ⋅ u2

= b3 + (b1 + x ⋅ w1) ⋅ u1 + (b2 + x ⋅ w2) ⋅ u2

= (b3 + u1 ⋅ b1 + u2 ⋅ b2) + (w1 ⋅ u1 + w2 ⋅ u2) ⋅ x

= (intercept) + (slope) ⋅ x.

17 / 65

We capture non-linear relationships between and by
replacing

with

where is an activation function, a mapping from
 to .

Adding an activation function greatly increases the set of
possible relations between and !

For example, the rectified linear unit (ReLU) activation
function:

Many more activation functions: sigmoid, softmax, identity,
etc. (see further).

A simple neural network (cont.)

x v

v = b3 + z1 ⋅ u1 + z2 ⋅ u2.

v = b3 + σ(z1) ⋅ u1 + σ(z2) ⋅ u2

= b3 + σ(b1 + x ⋅ w1) ⋅ u1 + σ(b2 + x ⋅ w2) ⋅ u2,

σ(.)

R R

x v

ReLU(x) = { x, if x ≥ 0

0, otherwise.

18 / 65

Examples of activation functions

Source: https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-deep-learning

19 / 65

https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-deep-learning

Artificial Neural networks (ANNs):

a collection of neurons
organized into an ordered set of layers
directed connections pass signals between neurons in
adjacent layers
to train:
update parameters describing the connections by
minimizing loss function over training data
to predict:
pass to first layer, output of final layer is .

The network is dense or densely connected if each
neuron in a layer receives an input from all the neurons
present in the previous layer.

This is a feedforward neural network - no loops!

From the simple neural network to ANNs

xi ŷ i

20 / 65

Using the neural nets terminology or language:

intercept called the bias

slopes called weights

 layers in total, with input layer denoted as layer
0 and output layer as

technically, deep learning refers to any neural
network that has 2 or more hidden layers. A single layer ANN, also called perceptron or artificial

neuron.

The neural nets' terminology

L + 1

L

21 / 65

This sequential layer structure is really at the core of the
Keras libary.

model <-
 keras_model_sequential() %>%
 layer_dense(...) %>%
 layer_dense(...)

An architecture with layers
In a neural network, input travels through a sequence of layers, and gets transformed into the output.

Layers consist of nodes and the connections between these nodes and the previous layer.

layer_dense() is creating a fully connected feed forward neural network.

22 / 65

model <- keras_model_sequential() %>%
 layer_dense() %>% # hidden layer
 layer_dense() # output layer

Each layer_dense() represents a hidden layer or the final
output layer.

model <- keras_model_sequential() %>%
 layer_dense() %>% # hidden layer 1
 layer_dense() %>% # hidden layer 2
 layer_dense() %>% # hidden layer 3
 layer_dense() # output layer

We can add multiple hidden layers by adding more
layer_dense() functions.

The last layer_dense() will always represent the
output layer.

An architecture with layers (cont.)

23 / 65

units = 512 : number of nodes in the given layer

input_shape = c(784)

tells the first hidden layer how many input
features there are
only required for the first layer_dense

activation = 'relu' : this hidden layer uses the ReLU
activation function.

Here: a (28x28) picture is flattened to a an input vector of
length 784.

A hidden layer
model <- keras_model_sequential() %>%
 layer_dense(units = 512, activation = 'relu', input_shape = c(784)) # hidden layer

24 / 65

A hidden layer - some intuition
Nodes in the hidden layer(s) represent intermediary features that we do not explicitely define.

We let the model decide the optimal features.

For example, recognizing a digit is more difficult than recognizing a horizontal or vertical line.

Hidden layers automatically split the problem into smaller problems that are easier to model.

25 / 65

Two primary arguments of concern for the final output
layer:

1. number of units
regression: units = 1 :

Output layer
model <- keras_model_sequential() %>%
 layer_dense(units = 512, activation = 'relu', input_shape = c(784) %>%
 layer_dense(units = 10, activation = 'softmax')

The choice of the units and activation function in the output layer depend on the type of prediction!

26 / 65

Two primary arguments of concern for the final output
layer:

1. number of units
regression: units = 1
binary classification: units = 1

Output layer
model <- keras_model_sequential() %>%
 layer_dense(units = 512, activation = 'relu', input_shape = c(784) %>%
 layer_dense(units = 10, activation = 'softmax')

The choice of the units and activation function in the output layer depend on the type of prediction!

27 / 65

Two primary arguments of concern for the final output
layer:

1. number of units
regression: units = 1
binary classification: units = 1
multi-class classification: units = n

Output layer
model <- keras_model_sequential() %>%
 layer_dense(units = 512, activation = 'relu', input_shape = c(784) %>%
 layer_dense(units = 10, activation = 'softmax')

The choice of the units and activation function in the output layer depend on the type of prediction!

28 / 65

Two primary arguments of concern for the final output
layer:

1. number of units
2. activation function

regression: activation = NULL (identity function)

Output layer
model <- keras_model_sequential() %>%
 layer_dense(units = 512, activation = 'relu', input_shape = c(784) %>%
 layer_dense(units = 10, activation = 'softmax')

The choice of the units and activation function in the output layer depend on the type of prediction!

29 / 65

Two primary arguments of concern for the final output
layer:

1. number of units
2. activation function

regression: activation = NULL (identity function)
binary classification: activation = 'sigmoid'

Output layer
model <- keras_model_sequential() %>%
 layer_dense(units = 512, activation = 'relu', input_shape = c(784) %>%
 layer_dense(units = 10, activation = 'softmax')

The choice of the units and activation function in the output layer depend on the type of prediction!

f(y) = 1
1+e−y

30 / 65

Two primary arguments of concern for the final output
layer:

1. number of units
2. activation function

regression: activation = NULL (identity function)
binary classification: activation = 'sigmoid'
multi-class classification: activation = 'softmax'

Output layer
model <- keras_model_sequential() %>%
 layer_dense(units = 512, activation = 'relu', input_shape = c(784) %>%
 layer_dense(units = 10, activation = 'softmax')

The choice of the units and activation function in the output layer depend on the type of prediction!

31 / 65



Your turn
Ultimately, here is a summary of the network architecture discussed so far

model <-
 keras_model_sequential() %>%
 layer_dense(units = 512,
 activation = 'relu',
 input_shape = c(784)) %>%
 layer_dense(units = 10,
 activation = 'softmax')

Can you figure out how many parameters will be trained for this network?

32 / 65

The model has 407,050 parameters:

784 inputs (28x28 pixels in a single image)

1 hidden layer, with

512 nodes and ReLU activation
thus, (784 x 512) + 512 = 401,920 parameters

multi-class output layer, with

10 nodes
softmax activation function
thus, (512 x 10) + 10 = 5,130 parameters

all together, that makes 407,050 parameters!

33 / 65

Network compilation

34 / 65

Initialize weights (randomly).

The forward pass then results in predicted values , to
be compared with .

The difference is measured with a loss function, the
quantity that will be minimized during training.

Keras includes many common loss functions:

"mse" : Gaussian
"poisson" : Poisson
"binary_crossentropy" : binary classification
"categorical_crossentropy" : multi-class classification
many others, see the Keras documentation

Pick a loss function that aligns best to the problem at
hand!

Loss function and forward pass

ŷ

y

35 / 65

https://keras.io/losses/

model <- model %>%
 compile(loss = "categorical_crossentropy",
 optimize = optimizer_rmsprop(),
 metrics = c('accuracy'))

Keras includes several optimizers for minimizing the loss
function.

Popular choices are:

optimizer_rmsprop()

optimizer_adam()

other optimizers, see the Keras documentation

The goal is to find weights and bias terms that minimize
the loss function.

Compiling the model

36 / 65

https://keras.io/optimizers/

In general terms, we want to find (with for all unknown
parameters)

With gradient descent: we'll move in the direction the
loss locally decreases the fastest!

Thus,

with learning rate .

With a loss function evaluated over training data points
(cfr. supra on epochs and minibatches)

Gradient descent and backpropagation

w

min
w

L(w).

wnew = wold − η ⋅ ∇wL(wold),

η

n

∇wL(w) =
n

∑
i=1

∇wLi

1

n

37 / 65

In general terms, we want to find (with for all unknown
parameters)

With gradient descent: we'll move in the direction the
loss locally decreases the fastest!

Thus,

with learning rate .

With a loss function evaluated over training data points
(cfr. supra on epochs and minibatches)

Computing the gradient of the loss function wrt all
trainable parameters:

tons of parameters
need for efficient algorithm to calculate gradient
need for generic algorithm usable for arbitrary
number of layers and neurons in each layer.

The strategy (Rumelhart et al., 1986, Nature)

backpropagation
derivatives in outer layer L are easy
derivatives in layer as a function of derivatives in
layer
all about the chain rule for derivatives!

Gradient descent and backpropagation

w

min
w

L(w),

wnew = wold − η ⋅ ∇wL(wold),

η

n

∇wL(w) =
n

∑
i=1

∇wLi

1

n

l

l + 1

38 / 65

https://en.wikipedia.org/wiki/Backpropagation

With batch gradient descent:

compute loss for each observation in the training data
update parameters after all training examples have
been evaluated
con: scales horribly to bigger data sets.

With stochastic gradient descent:

randomly select an observation, compute gradient
update parameters after this single observation has
been evaluated
con: takes a long time to convergence.

With mini-batch gradient descent:

randomly select a subset of the training observations,
compute gradient
update parameters after this subset has been
evaluated.

Pros:

balance efficiency of batch vs stochastic
balance robust convergence of batch with some
stochastic nature to avoid local minima.

Cons:

additional tuning parameter.

Three variants of gradient descent

39 / 65

We discussed so far:

design neural networks sequentially in {keras}
keras_model_sequential

layers consist of nodes and connections

vanilla choice is a fully connected layer
layer_dense

fit the model via gradient descent (i.e.
backpropagation).

List of tuning/architectural choices:

the number of layers
the number of nodes per layer
the activation functions
the layer type (more on this would require more time)
the loss function
the optimization algorithm
the batch size
the number of epochs
...

Summary of the fundamentals

40 / 65

Claim frequency and severity regression

41 / 65

Regression with neural networks
Actuaries often consider GLMs, for instance for claim frequency data:

We now redefine this model as a neural network:

Formula GLM Neural network

response output node

 Poisson distribution loss function

exp inverse link function activation function

predictors input nodes

fitted effect weights

Y ∼ Poisson(λ = exp(x
′

β)).

Y

x

β

42 / 65

nn_freq_intercept <-
 keras_model_sequential() %>%
 layer_dense(units = 1,
 activation = 'exponential',
 input_shape = c(1),
 use_bias = FALSE) %>%
 compile(loss = 'poisson',
 optimize = optimizer_rmsprop())

Q.: How many parameters does this model have?

layer_dense : there are no hidden layers, the input
layer is directly connected to the output layer.

units = 1 : there is one output node.

activation = 'exponential' : we use an exponential
inverse link function.

input_shape = c(1) : there is one input node, i.e., the
intercept which will be constant one.

use_bias = FALSE : we don't need a bias term, since
we explicitly include an input node equal to one.

loss = 'poisson' : we maximize the Poisson
likelihood, i.e., minimize the Poisson deviance.

Your first claim frequency neural network
Let's start with a model with only an intercept:

Y ∼ Poisson(λ = exp(1 ⋅ β)).

43 / 65

Create vectors for the input and output:

intercept <- rep(1, nrow(data_train))

counts <- data_train$nclaims

Fit the neural network:

nn_freq_intercept %>% fit(x = intercept,
 y = counts,
 epochs = 30,
 batch_size = 1024,
 validation_split = 0,
 verbose = 0)

x = intercept : use the intercept as feature.

y = counts : use the claim counts as target.

epochs = 20 : perform 20 training iterations over the
complete data.

batch_size = 1024 : use batches with 1024
observations to update weights.

validation_split = 0 : don't use a validation set, so
all observations are used for training.

verbose = 0 : silence keras such that no output is
generated during fitting.

Your first claim frequency neural network (cont.)

44 / 65

Comparing our neural network with a GLM
We compare the results of our neural network with the same model specified as a GLM:

There is a small difference in the parameter estimate, resulting from a different optimization technique.

45 / 65

The Poisson loss function, including exposure, is

which is proportional to:

This is the loss function for a Poisson model with:

observations and

weights .

Notice indeed how the parameter estimates of the
following two GLMs are identical:

Taking exposure into account in a neural network

L = ∑
i

expoi ⋅ λi − yi ⋅ log(expoi ⋅ λi),

L = ∑
i

expoi ⋅ (λi − log(λi)).
yi

expoi

yi
expoi

expoi

46 / 65

Nothing changes in our neural network model
architecture:

nn_freq_exposure <-
 keras_model_sequential() %>%
 layer_dense(units = 1,
 activation = 'exponential',
 input_shape = c(1),
 use_bias = FALSE) %>%
 compile(loss = 'poisson',
 optimize = optimizer_rmsprop())

It is however good practice to always recompile.

Otherwise the neural network will pick up where it left off
last time, with the optimal weights after fitting.

Create a vector with exposure values:

exposure <- data_train$expo

Divide claim counts by exposure and use weights:

nn_freq_exposure %>%
 fit(x = intercept,
 y = counts / exposure,
 sample_weight = exposure,
 epochs = 20,
 batch_size = 1024,
 validation_split = 0,
 verbose = 0)

Stay tuned to find out how to include exposure via an
offset term!

Taking exposure into account in a neural net (cont.)

47 / 65

Let's start by adding one feature, namely ageph :

ageph <- data_train$ageph

Define the neural network architecture with a hidden layer:

nn_freq_ageph <-
 keras_model_sequential() %>%
 layer_batch_normalization(input_shape = c(1)) %>%
 layer_dense(units = 5,
 activation = 'tanh') %>%
 layer_dense(units = 1,
 activation = 'exponential',
 use_bias = TRUE) %>%
 compile(loss = 'poisson',
 optimize = optimizer_rmsprop())

Pre-processing:

layer_batch_normalization centers and scales the input
features (here only one) per mini-batch.

Hidden layer:

layer_dense with five nodes and the tanh activation
function.

Output layer:

layer_dense with one node and the exponential
activation function.

Notice how we set use_bias = TRUE for the intercept.

Adding an input feature and a hidden layer

48 / 65

Let's fit our brand new neural net:

nn_freq_ageph %>%
 fit(x = ageph,
 y = counts / exposure,
 sample_weight = exposure,
 epochs = 30,
 batch_size = 1024,
 validation_split = 0,
 verbose = 0)

We also fit a GAM with a smooth effect for ageph :

library(mgcv)
gam_ageph <- gam(nclaims ~ s(ageph),
 data = mtpl_train,
 family = poisson(link = 'log'),
 offset = log(expo))

Q.: What do you think about those fits?

Adding an input feature and a hidden layer (cont.)

49 / 65

Figure taken from Schelldorfer and Wuthrich (2019).

The output node, without skip connection, calculates (with
 the activation function):

With a skip connection, this simply becomes:

We take a linear combination of the last hidden layer
outputs and add the skip input, before applying the
activation function.

So, what can we do with this?

Adding a skip connection in a neural network
So far, we stayed in a purely sequential architecture with keras_model_sequential() .

Now, we will allow some input nodes to be connected directly to the output node, i.e., skip connections.

σ(.)

σ(∑
i

wihi + b).

σ(∑
i

wihi + b + s).

50 / 65

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3320525

Adding a skip connection in a neural network (cont.)
Let's take a claim frequency example with the exponential activation function.

Adding exposure as an offset term:

Adding a base prediction:

The combination of both:

A skip connection allows us to guide the neural net in the right direction and to model adjustments on top of the base
predictions, for example obtained via a GLM or GAM.

In the actuarial lingo this is called a Combined Actuarial Neural Network (CANN).

output = exp(∑
i

wihi + b + log(expo)) = expo ⋅ exp(∑
i

wihi + b).

output = exp(∑
i

wihi + b + log(base)) = base ⋅ exp(∑
i

wihi + b).

output = exp(∑
i

wihi + b + log(expo ⋅ base)) = expo ⋅ base ⋅ exp(∑
i

wihi + b).

51 / 65

Adding a skip connection in a neural network (cont.)

52 / 65

Henckaerts et al. (2021) paper on Boosting insights in insurance tariff plans with tree-based
machine learning methods

full algorithmic details of regression trees, bagging, random forests and gradient boosting
machines
with focus on claim frequency and severity modelling
including interpretation tools (VIP, PDP, ICE, H-statistic)
model comparison (GLMs, GAMs, trees, RFs, GBMs)
managerial tools (e.g. loss ratio, discrimination power).

The paper comes with two notebooks, see examples tree-based paper and severity modelling.

The paper comes with an R package for fitting random forests on insurance data, see
distRforest.

Our lab's work on tree-based machine learning

53 / 65

https://katrienantonio.github.io/publication/2020-boosting/
https://github.com/henckr/treeML
https://github.com/henckr/sevtree
https://github.com/henckr/distRforest

ANNs and CANNs for both claim frequency and
severity (seperately), and then their

combination into a technical tariff

CANNs with input from (smartly engineered) GLM and
GBM, with

fixed input (say) used via skip connection

input used via skip, but flexible (weights are
trained)

bias regularization

in a GLM with canonical link
how to restore this balance in a neural net?

preprocessing steps of categorical inputs

one-hot encoding: levels into binary inputs
embedding layers: transform levels into

interpretation tools

partial dependence plots (PDPs)
variable importance plots.

Ongoing work

ŷ
(in)
i

f fixed (xi, ŷ
(in)
i
) = exp(ln(ŷ (in)

i
) + ŷ

(adj)
i

)

f flex (xi, ŷ
(in)
i
) = exp([w1 w2] ⋅ [ln(ŷ

(in)
i

) ŷ
(adj)
i

]
t

+ b)

∑
i
yi = ∑

i
f̂ (xi)

p p

p R
d

54 / 65

Some first results

55 / 65

Some first results (cont.)

56 / 65

An outlook to convolutional neural networks (CNNs)

57 / 65

With ANNs, our first step when working with images was to
flatten the image matrix into a vector.

This approach

is not translation invariant. A completely different set
of nodes gets activated when the image is shifted.

ignores the dependency between nearby pixels.

requires a large number of parameters/weights as
each node in the first hidden layer is connected to all
nodes in the input layer.

Source: Sumit Saha

Convolutional layers allow to handle multi-
dimensional data, without flattening.

The problems with flattening

58 / 65

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

The weights in a 2d convolutional layer are structured in a
small image, called the kernel or the filter.

We slide the kernel over the input image, multiply the
selected part of the image and the kernel elementwise and
sum:

Source: Bradley Boehmke

Convolutional layers
Classical hidden layers (as we have seen so far) use 1 dimensional inputs to construct 1 dimensional features.

2d convolutional layers use 2 dimensional input (for example images) to construct 2 dimensional feature maps.

59 / 65

https://github.com/rstudio-conf-2020/dl-keras-tf

The weights in a 2d convolutional layer are structured in a
small image, called the kernel or the filter.

We slide the kernel over the input image, multiply the
selected part of the image and the kernel elementwise and
sum:

Source: Bradley Boehmke

Convolutional layers (cont.)
Classical hidden layers (as we have seen so far) use 1 dimensional inputs to construct 1 dimensional features.

2d convolutional layers use 2 dimensional input (for example images) to construct 2 dimensional feature maps.

60 / 65

https://github.com/rstudio-conf-2020/dl-keras-tf

Pooling layers divide the image in blocks of equal size
and then aggregate the data per block.

Two common operations are:

average pooling

layer_average_pooling_2d(pool_size = c(2, 2),
 strides = c(2, 2))

max pooling

layer_max_pooling_2d(pool_size = c(2, 2),
 strides = c(2, 2))

pool_size = c(2, 2) :

Pool blocks of 2x2

strides = c(2, 2) :

Move in steps of size 2 in both the horizontal and
vertical direction.

Pooling layers
A convolution layer is typically followed by a pooling step, which reduces the size of the feature maps.

61 / 65

When all features are extracted, the data is flattened.

This data can be seen as engineered features,
automatically created by the CNN architecture.

In a next step, a feed-forward ANN is used to analyze these
local features.

keras_model_sequential() %>%
 layer_conv_2d() %>%
 layer_max_pooling_2d() %>%
 layer_flatten()

keras_model_sequential() %>%
 layer_conv_2d() %>%
 layer_max_pooling_2d() %>%
 layer_flatten() %>%
 layer_dense() %>%
 layer_dense() %>%
 compile()

Flattening layers

62 / 65

A CNN architecture

63 / 65

Conclusions

Insights in the working principles behind (simple) neural networks, and their use for regression problems with
tabular data.

However, first experiments indicate that such neural nets need the input of a base model (e.g., a GLM or GBM)
to be competitive with these actuarial predictive models in terms of predictive accurary as well as interpretation of fitted
effects of variables.

But, they have a competitive advantage when input data become more large and more complex (e.g., v-a heat
maps collected with telematics devices, together with more traditional input features).

64 / 65

Thanks!

This research is supported by the Ageas - KU Leuven research chair on insurance analytics. The support of Ageas is gratefully
acknowledged.

Slides created with the R package xaringan.

For more information please visit

 https://github.com/katrienantonio

 https://katrienantonio.github.io

65 / 65

https://github.com/yihui/xaringan
https://github.com/katrienantonio
https://katrienantonio.github.io/

