
Loss modelling, reserving and fraud analytics in R
A hands-on workshop

Katrien Antonio & Jonas Crevecoeur
IA|BE workshop | June, 2021

https://www.github.com/katrienantonio/workshop-loss-reserv-fraud

Prologue

2 / 79

Introduction

Course
 https://github.com/katrienantonio/workshop-loss-reserv-fraud

The course repo on GitHub, where you can find the data sets, lecture sheets, R scripts and R markdown files.

Us
 https://katrienantonio.github.io/

 katrien.antonio@kuleuven.be & jonas.crevecoeur@kuleuven.be

 (Katrien, PhD) Professor in insurance data science at KU Leuven and University of Amsterdam

 (Jonas, PhD) Post-doctoral researcher in biostatistics at KU Leuven

3 / 79

https://github.com/katrienantonio/workshop-loss-reserv-fraud
https://katrienantonio.github.io/
mailto:katrien.antonio@kuleuven.be
mailto:jonas.crevecoeur@kuleuven.be

Checklist
☑ Do you have a fairly recent version of R?

 version$version.string
 ## [1] "R version 4.0.3 (2020-10-10)"

☑ Do you have a fairly recent version of RStudio?

 RStudio.Version()$version
 ## Requires an interactive session but should return something like "[1] ‘1.3.1093’"

☑ Have you installed the R packages listed in the software requirements?

or

☑ Have you created an account on RStudio Cloud (to avoid any local installation issues)?

4 / 79

Why this training?

The goals of this training

develop practical data handling foundations, e.g. going from granular claims development data to aggregated
figures

visualize and explore data

cover essential actuarial modelling tasks, including loss modelling for pricing, claims reserving and building a fraud
detection model

learn by doing, get you started (in particular when you have limited experience in R).

"In short, we will cover things that we wish someone had taught us in our undergraduate programs."
This quote is from the Data science for economists course by Grant McDermott.

5 / 79

http://github.com/uo-ec607/lectures

Why R and RStudio?

Data science positivism
Next to Python, R has become the de facto language for data science, with a cutting edge machine learning toolbox.
See: The Popularity of Data Science Software
R is open-source with a very active community of users spanning academia and industry.

Bridge to actuarial science, econometrics and other tools
R has all of the statistics and econometrics support, and is amazingly adaptable as a “glue” language to other
programming languages and APIs.
R does not try to be everything to everyone. The RStudio IDE and ecosystem allow for further, seemless integration (with
e.g. python, keras, tensorflow or C).
Widely used in actuarial undergraduate programs

Disclaimer + Read more
It's also the language that we know best.
If you want to read more: R-vs-Python, when to use Python or R or Hadley Wickham on the future of R

6 / 79

http://r4stats.com/articles/popularity/
https://blog.rstudio.com/2019/12/17/r-vs-python-what-s-the-best-for-language-for-data-science/
https://www.datacamp.com/community/blog/when-to-use-python-or-r
https://qz.com/1661487/hadley-wickham-on-the-future-of-r-python-and-the-tidyverse/

7 / 79

Welcome to the tidyverse!
The tidyverse is an opinionated collection of R packages designed for data science. All packages share an
underlying design philosophy, grammar, and data structures.

More on: tidyverse.

Install the packages with install.packages("tidyverse") . Then run library(tidyverse) to load the core tidyverse.

8 / 79

https://www.tidyverse.org/

Prologue

What's out there: the R universe (see the prework)

why R and RStudio?
welcome to the tidyverse!
principles of tidy data
workflow of a data scientist

Data wrangling and visualisation (see the prework)

tibbles
pipe operator %>%
{dplyr} instructions
{ggplot2} for data visualisation
what else is there?

Data sets used in the session

MTPL data on frequency and severity of claims
Secura Re losses

Fitting frequency models in R

frequency - severity approach
the class
MLE, model selection and evaluation tools
excess zeroes

Fitting severity models in R

from simple to complex parametric distributions
be aware of truncation and censoring
a global fit via splicing
case-study on the Secura Re losses
what else is there?

Today's Outline

(a, b, 0)

9 / 79

Data sets used in the session

10 / 79

Data sets used in this session - MTPL
We illustrate some first data handling steps on the Motor Third Party Liability data set. There are 163 231 policyholders in this
data set.

The frequency of claiming (nclaims) and corresponding severity (avg , the amount paid on average per claim reported by a
policyholder) are the target variables in this data set.

Predictor variables are:

the exposure-to-risk, the duration of the insurance coverage (max. 1 year)
factor variables, e.g. gender, coverage, fuel
continuous, numeric variables, e.g. age of the policyholder, age of the car
spatial information: postal code (in Belgium) of the municipality where the policyholder resides.

More details in Henckaerts et al. (2018, Scandinavian Actuarial Journal) and Henckaerts et al. (2020, North American Actuarial
Journal).

11 / 79

https://katrienantonio.github.io/portfolio/machine-learning
https://katrienantonio.github.io/portfolio/machine-learning

Data sets used in this session - MTPL
You can load the data from a .R script in the course material:

install.packages("rstudioapi")
dir <- dirname(rstudioapi::getActiveDocumentContext()$path)
setwd(dir)
mtpl_orig <- read.table('./data/PC_data.txt',
 header = TRUE)
mtpl_orig <- as_tibble(mtpl_orig)

If you work in an R notebook or R markdown file, you can also go for:

install.packages("here")
library(here)
dir <- here::here()
setwd(dir)
mtpl_orig <- read.table('./data/PC_data.txt',
 header = TRUE)
mtpl_orig <- as_tibble(mtpl_orig)

The last instruction transforms mtpl_orig into a tibble .

12 / 79

These instructions are recommended because they avoid referring to a specific working directory on your
computer, e.g.

setwd("C:\\Users\\u0043788\\Dropbox\\Arcturus course\\data")
mtpl_orig <- read.table('PC_data.txt', header = TRUE)

If you organize your data analysis or project in a folder on your computer that holds all relevant files, then the above
instructions allow you (and your colleagues) to get started right away.

The only thing you need is an organized file structure.

The {rstudioapi} package is developed for RStudio. The {here} library is more general.

Do note that when working in a .Rmd, {here} will use the folder that markdown lives in as the working directory, but if you are
working in a script (.R) the working directory is the top level of the project file.

13 / 79

First of all, we explore the structure of mtpl_orig with str() .

str(mtpl_orig)
tibble [163,231 x 18] (S3: tbl_df/tbl/data.frame)
$ ID : int [1:163231] 1 2 3 4 5 6 7 8 9 10 ...
$ NCLAIMS : int [1:163231] 1 0 0 0 1 0 1 0 0 0 ...
$ AMOUNT : num [1:163231] 1618 0 0 0 156 ...
$ AVG : num [1:163231] 1618 NA NA NA 156 ...
$ EXP : num [1:163231] 1 1 1 1 0.0466 ...
$ COVERAGE: chr [1:163231] "TPL" "PO" "TPL" "TPL" ...
$ FUEL : chr [1:163231] "gasoline" "gasoline" "diesel" "gasoline" ...
$ USE : chr [1:163231] "private" "private" "private" "private" ...
$ FLEET : chr [1:163231] "N" "N" "N" "N" ...
$ SEX : chr [1:163231] "male" "female" "male" "male" ...
$ AGEPH : int [1:163231] 50 64 60 77 28 26 26 58 59 34 ...
$ BM : int [1:163231] 5 5 0 0 9 11 11 11 0 7 ...
$ AGEC : int [1:163231] 12 3 10 15 7 12 8 14 3 6 ...
$ POWER : int [1:163231] 77 66 70 57 70 70 55 47 98 74 ...
$ PC : int [1:163231] 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 ...
$ TOWN : chr [1:163231] "BRUSSEL" "BRUSSEL" "BRUSSEL" "BRUSSEL" ...
$ LONG : num [1:163231] 4.36 4.36 4.36 4.36 4.36 ...
$ LAT : num [1:163231] 50.8 50.8 50.8 50.8 50.8 ...

14 / 79

Or with head() ...

head(mtpl_orig) %>% kable(format = 'html')

ID NCLAIMS AMOUNT AVG EXP COVERAGE FUEL USE FLEET SEX AGEPH BM AGEC POWER PC TOW

1 1 1618.0010 1618.0010 1.0000000 TPL gasoline private N male 50 5 12 77 1000 BRUS

2 0 0.0000 NA 1.0000000 PO gasoline private N female 64 5 3 66 1000 BRUS

3 0 0.0000 NA 1.0000000 TPL diesel private N male 60 0 10 70 1000 BRUS

4 0 0.0000 NA 1.0000000 TPL gasoline private N male 77 0 15 57 1000 BRUS

5 1 155.9746 155.9746 0.0465753 TPL gasoline private N female 28 9 7 70 1000 BRUS

6 0 0.0000 NA 1.0000000 TPL gasoline private N male 26 11 12 70 1000 BRUS

15 / 79

Note that the data mtpl_orig uses capitals for the variable names

mtpl_orig %>% slice(1:3) %>% select(-LONG, -LAT) %>% kable(format = 'html')

ID NCLAIMS AMOUNT AVG EXP COVERAGE FUEL USE FLEET SEX AGEPH BM AGEC POWER PC TOWN

1 1 1618.001 1618.001 1 TPL gasoline private N male 50 5 12 77 1000 BRUSSEL

2 0 0.000 NA 1 PO gasoline private N female 64 5 3 66 1000 BRUSSEL

3 0 0.000 NA 1 TPL diesel private N male 60 0 10 70 1000 BRUSSEL

We change this to lower case variables, and rename exp to expo .

mtpl <- mtpl_orig %>%
 # rename all columns
 rename_all(function(.name) {
 .name %>%
 # replace all names with the lowercase versions
 tolower
 })
mtpl <- rename(mtpl, expo = exp)

Check rename_all() in {dplyr}.
16 / 79



Your turn

To get warmed up, let's load the mtpl data and do some basic investigations into the
variables. The idea is to get a feel for the data.

Your starting point are the instructions in the R script on the course website.

Q: you will work through the following exploratory steps.

1. Calculate the empirical claim frequency, per unit of exposure. Then do the same per
gender. What do you conclude?

2. Visualize the distribution of nclaims with a bar plot, use geom_bar as a layer in ggplot .
Try different versions of this bar plot.

3. Visualize the distribution of avg with a density plot, use geom_density as a layer. Restrict
the range of values displayed in the plot.

4. Visualize the distribution of avg with a histogram, use geom_histogram . Play with the
binwidth .

17 / 79

dim(mtpl)

[1] 163231 18

mtpl %>% summarize(emp_freq =
 sum(nclaims) / sum(expo))

emp_freq

0.1393352

mtpl %>%
 group_by(sex) %>%
 summarize(emp_freq = sum(nclaims) / sum(expo))

sex emp_freq

female 0.1484325

male 0.1361164

g <- ggplot(mtpl, aes(nclaims)) + theme_bw() +
 geom_bar(aes(weight = expo), col = KULbg,
 fill = KULbg, alpha = 0.5) +
 labs(y = "Abs freq (in exposure)") +
 ggtitle("MTPL - number of claims")
g

18 / 79

g <- ggplot(mtpl, aes(nclaims)) + theme_bw() +
 geom_bar(aes(weight = expo), col = KULbg,
 fill = KULbg, alpha = 0.5) +
 labs(y = "Abs freq (in exposure)") +
 ggtitle("MTPL - number of claims")
g

g <- ggplot(mtpl, aes(nclaims)) + theme_bw()
g + geom_bar(aes(y = (..count..)/sum(..count..)),
 col = KULbg, fill = KULbg, alpha = 0.5) +
 labs(y = "Relative frequency") +
 ggtitle("MTPL - relative number of claims")

19 / 79

With a density plot: mind the filter(.) instruction and
the use of xlim(.,.)

g_dens <- mtpl %>% filter(avg > 0 & avg <= 81000) %>%
 ggplot(aes(x = avg)) +
 theme_bw() +
 geom_density(adjust = 3, col = KULbg,
 fill = KULbg, alpha = 0.5) +
 xlim(0, 1e4) +
 ylab("") + xlab("severity") +
 ggtitle("MTPL data - average amount per claim")
g_dens

20 / 79

With a histogram:

g <- mtpl %>% filter(avg > 0 & avg <= 81000) %>%
 ggplot(aes(x = avg)) +
 theme_bw() + xlab("severity") +
 geom_histogram(binwidth = 100, col = KULbg,
 fill = KULbg, alpha = 0.5) +
 xlim(0, 1e4) +
 labs(y = "Frequency histogram")
g

21 / 79

Secura Belgian Re automobile claims from 1988 to 2001
data, gathered from several European insurance
companies, exceeding 1 200 000 Euro.

The data were, among others, corrected for inflation, see
the {ReIns} library.

secura <- read.table(file="./data/SecuraRe.txt",
 header = TRUE, sep = "\t")

The density plots on the right show typical features of
insurance loss data:

positive
skewed to the right
heavy right tail
(possibly) subject to truncation and censoring.

Data sets used in this session - Secura Re losses

22 / 79



Your turn

You will now use the instructions covered in the exploration of the mtpl data to picture the
secura losses.

Q: you will work through the following exploratory steps.

1. Visualize the distribution of Loss in secura with a density plot, use geom_density as a
layer.

2. Do the same for log(Loss) .

3. Plot the Loss versus Year . Use the geom_point layer.

23 / 79

ggplot(secura, aes(Year, Loss)) + theme_bw() +
 geom_point(colour = KULbg, size = 2, alpha = 0.5) +
 ggtitle('Secura Re - losses arriving over time')

The secura losses over time...

24 / 79

Fitting frequency models in R

25 / 79

Assumptions:

claim severity and claim frequency are independent

we ignore any additional covariates (more on that next
week).

Each record in the data set registers

exposure, , fraction of the year in which the
contract was active

number of claims, , observed claim count in the
period of exposure

average claim size per reported claim (or: severity),
, total losses in the period of exposure divided by

the number of claims, if .

The frequency - severity approach

i

ei

Ni

Si

Ni > 0

26 / 79

Let be a count or frequency random variable, with
probability function (pf) .

The -class of frequency distributions is a two-
parameter class of distributions that satisfy

The probability then follows from .

Members of this class are the:

Poisson
Binomial
Negative Binomial
Geometric distribution.

The (a, b, 0) class

N

Pr(N = k) = pk

(a, b, 0)

k ⋅ = a ⋅ k + b k ≥ 1.
pk

pk−1

p0 ∑+∞
k=0 pk = 1

27 / 79

Relevant claim frequency distributions in the class:

Member slope Probability function Parameter(s) Moments

Binomial

Poisson

Negative Binomial

(a, b, 0)

a pk

a < 0 ⋅ pk ⋅ (1 − p)kn!
k!(n−k)! p ∈ (0, 1) E(N) = n ⋅ p

n ∈ N Var(N) = n ⋅ p ⋅ (1 − p)

a = 0 e−λ ⋅ λk

k!
λ ∈ (0, ∞) E(N) = λ

Var(N) = λ

a > 0 ⋅ ()
r

⋅ ()
kΓ(r+k)

k!Γ(r)
r

r+μ

μ

r+μ
μ ∈ (0, ∞) E(N) = μ

r ∈ (0, ∞) Var(N) = μ +
μ2

r

28 / 79

To check the relation for mtpl$nclaims we start
from the empirical count distribution

mtpl$nclaims %>% table %>% prop.table

We store the empirical probabilities in a vector

empirical <- mtpl$nclaims %>%
 table %>% prop.table %>% as.numeric

and the

k <- 1:(length(empirical) - 1)
ab0_relation <- empirical[k+1] / empirical[k] * k

ab0_data <- tibble(k = k, ab0_rel = ab0_relation)

The positive slope when fitting indicates a
NegBin distribution for mtpl$nclaims , see

ab0_data %>% lm(ab0_rel ~ k, data = .)

and visually

The (a, b, 0) class: a visual check

(a, b, 0)

p̂k

k ⋅
pk
pk−1

a ⋅ k + b

29 / 79

Let's explore different ways to calculate the empirical
mean claim frequency.

Inspect the following instructions and list pros and cons:

mean(mtpl$nclaims)
sum(mtpl$nclaims)/sum(mtpl$expo)
weighted.mean(mtpl$nclaims/mtpl$expo, mtpl$expo)
mtpl %>%
 summarize(emp_freq = sum(nclaims) / sum(expo))

[1] 0.1239715
[1] 0.1393352
[1] 0.1393352

emp_freq

0.1393352

What about the empirical variance? Overdispersion!

m <- sum(mtpl$nclaims)/sum(mtpl$expo)
m
[1] 0.1393352
var <- sum((mtpl$nclaims - m * mtpl$expo)^2)/
 sum(mtpl$expo)
var
[1] 0.1517246

Here we use the expression for the variance:

We empirically calculate the first expected value by taking
exposure into account.

Moreover, we compare each realization of nclaims with its
expected value, i.e. m * expo where m is the empirical
mean claim frequency.

Empirical mean and variance of the claim frequency

Var(X) = E[(X − EX)2]

30 / 79

Fit a distribution to the data by maximizing the
likelihood over the unknown parameter vector

In practice, we minimize the negative log-likelihood

If exposure is available, we'll typically incorporate the
exposure measure in the mean of the distribution

Let's make this more concrete for the Poisson distribution:

The corresponding log-likelihood becomes:

How about fitting a parametric count distribution
to data in R?

Maximum likelihood estimation (MLE)

θ

L(θ) = ∏
i

Pr(Ni = ni ∣ θ).

L(θ) = −∑
i

log(Pr(Ni = ni ∣ θ)).

L(θ) = −∑
i

log(Pr(Ni = ni ∣ θ, ei)).

Ni ∼ Poi(ei ⋅ λ).

∑
i

ni ⋅ log(ei ⋅ λ) − ei ⋅ λ − log(ni!).

31 / 79

A (naive) first solution uses fitdistr(.) from the {MASS}
library

library(MASS)
fitdistr(mtpl$nclaims, "poisson")
lambda
0.1239715495
(0.0008714846)

Which number do you recognize here for ?

Alternatively, we can use the glm(.) function in a smart
way:

freq_glm_poi <- glm(nclaims ~ 1,
 family = poisson(link = "log"),
 data = mtpl)

Fit a Poisson GLM, with logarithmic link function.

This implies:

 ~ Poisson, with only an intercept in the linear predictor

or,

Fit this model on data = mtpl .

Maximum likelihood estimation (MLE) in R

λ̂

Y

log(E[Y]) = β0,

E[Y] = λ = exp (β0).

32 / 79

freq_glm_poi <- glm(nclaims ~ 1, offset = log(expo),
 family = poisson(link = "log"),
 data = mtpl)
freq_glm_poi %>% broom::tidy()

term estimate std.error statistic p.value

(Intercept) -1.970873 0.0070297 -280.3632 0

What is your estimate for the expected annual claim
frequency?

Use nclaims as .

Use only an intercept in the linear predictor ~ 1 .

Include log(expo) as an offset term in the linear predictor.

Then,

Put otherwise,

where refers to expo the exposure variable.

Y

log (expo) + β0.

E[Y] = expo ⋅ exp (β0) ,

expo

33 / 79

Writing a function for the negative log-likelihood is
another option.

The general framework for a one-parameter distribution
then becomes

neg_loglik_distr <- function(par, freq, expo){
 -sum(ddistr(freq, par, log = T))
}
nlm(neg_loglik_distr, 1, hessian = TRUE,
 freq = mtpl$nclaims, expo = mtpl$expo)

Tweaking the general framework to the Poisson setting
then becomes ...

neg_loglik_pois <- function(par, freq, expo){
 lambda <- expo*exp(par)
 -sum(dpois(freq, lambda, log = T))
}
sol_poi <- nlm(neg_loglik_pois, 1, hessian = TRUE,
 freq = mtpl$nclaims, expo = mtpl$expo)

Inspect the results

exp(sol_poi$estimate)
[1] 0.1393351
sqrt(diag(solve(sol_poi$hessian)))
[1] 0.007029369
sol_poi$minimum
[1] 63837.82

Do you recognize these numbers?

Maximum likelihood estimation (MLE) in R (cont.)

34 / 79

We now focus on fitting the Negative Binomial distribution
to the mtpl$nclaims frequency data, using glm.nb() from
the {MASS} library.

library(MASS)
freq_glm_nb <- glm.nb(nclaims ~ 1 +
 offset(log(expo)),
 link = log,
 data = mtpl)
freq_glm_nb %>% broom::tidy()

term estimate std.error statistic p.value

(Intercept) -1.968155 0.0073391 -268.174 0

The additional parameter is estimated as (point estimate
and standard error)

[1] 1.435807
[1] 0.08039722

Inspect the model output via

summary(freq_glm_nb)

Call:
glm.nb(formula = nclaims ~ 1 + offset(log(expo)), da
link = log, init.theta = 1.435806632)

Deviance Residuals:
Min 1Q Median 3Q Max
-0.5164 -0.5164 -0.5164 -0.4263 4.8511

Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.968155 0.007339 -268.2 <2e-16 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.'

(Dispersion parameter for Negative Binomial(1.4358)

Null deviance: 78254 on 163230 degrees of free
Residual deviance: 78254 on 163230 degrees of free
AIC: 127192

Number of Fisher Scoring iterations: 1

r

35 / 79



Your turn

Q: you will work through the following steps

1. Starting from the handcrafted Poisson likelihood and its numerical optimization, can you
write similar instructions for the Negative Binomial?

2. Can you match the estimates obtained with your routine with those of the glm.nb() call?

36 / 79

Let's now focus on the handcrafted Negative Binomial
likelihood optimization:

neg_loglik_nb <- function(par, freq, expo){
 mu <- expo*exp(par[1])
 r <- exp(par[2])
 -sum(dnbinom(freq, size = r, mu = mu, log = TRUE))
}
sol_nb <- nlm(neg_loglik_nb, c(1, 1), hessian = TRUE,
 freq = mtpl$nclaims, expo = mtpl$expo)

Inspect the resulting estimates

sol_nb$estimate
[1] -1.9681557 0.3617181

We inspect the results

exp(sol_nb$estimate)
[1] 0.1397143 1.4357941
sqrt(diag(solve(sol_nb$hessian)))
[1] 0.007349782 0.056009902
sol_nb$minimum
[1] 63593.93

The variance estimated by this Negative Binomial model is
then

exp(sol_nb$estimate[1]) +
(exp(sol_nb$estimate[1])^2)/(exp(sol_nb$estimate[2]))
[1] 0.1533096

which is very close to the empirical variance!

37 / 79

Model selection and evaluation tools
The AIC can be used to compare models

AIC_poi <- 2*length(sol_poi$estimate) + 2*sol_poi$minimum
AIC_nb <- 2*length(sol_nb$estimate) + 2*sol_nb$minimum
c(AIC_nb = AIC_nb, AIC_poi = AIC_poi)
AIC_nb AIC_poi
127191.9 127677.6

Smaller is better, thus preferred distribution is the Negative Binomial based on AIC!

AIC = 2 ⋅ #param − 2 ⋅ log-likelihood.

38 / 79

Next to this, we compare the observed and fitted claim count distribution.

For example, with the fitted Negative Binomial distribution

observed_count = rep(0, 5)
model_based_count = rep(0, 5)

for(i in 1:5) {
 observed_count[i] = sum(mtpl$nclaims == i-1)
 model_based_count[i] = sum(dnbinom(i-1, size = freq_glm_nb$theta, mu = fitted(freq_glm_nb)))
}

data.frame(frequency = 0:4,
 observed_count = observed_count,
 model_based_count = round(model_based_count))
frequency observed_count model_based_count
1 0 144936 145014
2 1 16556 16347
3 2 1558 1685
4 3 162 167
5 4 17 16

How would you explain the code (in your own words)? Can you adjust the code to the Poisson distribution?

39 / 79

Excess zeroes in claim count data
Standard count distributions have often difficulty to capture the large number of zeroes in claim frequency data.

We propose two strategies to model an excessive number of zeroes.

With a Zero-Inflated (ZI) distribution:

Zero-inflated count models are two-component mixture models combining a point mass at zero with a proper count
distribution. Thus, there are two sources of zeroes: zeroes may come from both the point mass and from the count
component.

With a Hurdle distribution:

How can we fit these distributions to given data with R?

P(N ZI = k) = {π + (1 − π) ⋅ P(N = 0) k = 0
(1 − π) ⋅ P(N = k) k > 0.

P(N hurdle = k) = {
π k = 0

(1 − π) ⋅ k > 0.
P(N=k)

1−P(N=0)

40 / 79

The library {pscl} enables maximum likelihood estimation
of zero-inflated and hurdle models for count data.

The dist = . available in zeroinfl(.) are the Poisson,
Negative Binomial and the geometric distribution.

The offset = . is an a priori known component to be
included in the linear predictor of the count model (as we
did before).

Usually the count model is a Poisson or negative binomial
regression (with log link).

A binary model is used that captures the probability of
zero inflation. In the simplest case only with an intercept
but potentially containing regressors. For this zero-inflation
model, a binomial model with different links can be used,
typically logit or probit.

library(pscl)
f_ZIP <- pscl::zeroinfl(nclaims ~ 1, offset = log(expo)
 dist = "poisson", data = mtpl)
summary(f_ZIP)

Call:
pscl::zeroinfl(formula = nclaims ~ 1, data = mtpl, o
dist = "poisson")

Pearson residuals:
Min 1Q Median 3Q Max
-0.3584 -0.3584 -0.3584 -0.2976 36.1142

Count model coefficients (poisson with log link):
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.48286 0.02226 -66.63 <2e-16 ***

Zero-inflation model coefficients (binomial with log
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.46932 0.05483 -8.56 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.'

41 / 79

https://github.com/atahk/pscl

More detailed inspection of the output stored in f_ZIP

f_ZIP$coefficients
$count
(Intercept)
-1.482859

$zero
(Intercept)
-0.4693167
(f_ZIP_lambda <- exp(as.numeric(f_ZIP$coefficients[1])))
[1] 0.2269878
(f_ZIP_pi <- exp(as.numeric(f_ZIP$coefficients[2]))/(1+exp(as.numeric(f_ZIP$coefficients[2]))))
[1] 0.384778
(AIC_ZIP <- 2*length(f_ZIP$coefficients) - 2*f_ZIP$loglik)
[1] 127241.3

The mean and variance (for expo == 1) as captured by the ZIP

(ZIP_mean <- (1-f_ZIP_pi)*f_ZIP_lambda)
[1] 0.1396479
(ZIP_var <- (1-f_ZIP_pi)*f_ZIP_lambda*(1+f_ZIP_pi*f_ZIP_lambda))
[1] 0.1518447

42 / 79

A handcrafted MLE with the ZIP distribution can be put together as

neg_loglik_ZIP <- function(par, freq, expo){
 lambda <- expo*exp(par[1])
 p <- exp(par[2])/(1+exp(par[2]))

 -sum((freq == 0) * (log(p + (1-p)*dpois(0, lambda, log = FALSE)))) -
 sum((freq != 0) * (log((1-p)) + dpois(freq, lambda, log = TRUE)))
}

sol_ZIP <- nlm(neg_loglik_ZIP, c(1, 1), hessian = TRUE,
 freq = mtpl$nclaims, expo = mtpl$expo)
sol_ZIP$estimate
[1] -1.4829209 -0.4694681

and their corresponding standard errors

(sol_ZIP_se <- sqrt(diag(solve(sol_ZIP$hessian))))
[1] 0.02224688 0.05480811

43 / 79



Your turn

Q: as a final challenge

1. Adjust the code of the ZIP to fit the hurdle Poisson model, use pscl::hurdle() .

2. Starting from the handcrafted ZIP likelihood, write code for the hurdle Poisson model.

44 / 79

Fitting severity models in R

45 / 79

Famous examples of 1 and 2 parameter distributions
used in loss modelling:

Exponential
Lognormal
Gamma and Inverse Gaussian.

Some less straightforward more flexible parametric
distributions:

Burr (3 parameters)
GB2 (4 parameters).

Typically challenging to fit, picking meaningful starting
values in numerical optimization routines matters!

From simple to complex parametric distributions

46 / 79

Distribution Density Mean R

Exponential dexp ...

Gamma dgamma ...

Inverse Gaussian dinvgaus package {statmod}

Lognormal dlnorm ...

The {actuar} package has some functions related to the Burr and GB2 distributions, e.g. dburr and dgenbeta .

Mind the different parametrizations of these distributions!

f(y) = λe−λy E[Y] = 1/λ

f(y) = βαyα−1e−βy1

Γ(α)
E[Y] = α/β

f(y) = ()
1/2

exp []λ

2πy3

−λ(y − μ)2

2μ2y
E[Y] = μ

f(y) = exp [− ()
2

]1

√2πσy

1

2

log y − μ

σ
E[Y] = exp(μ + σ2)1

2

47 / 79

Be aware of truncation!
In secura only losses above 1.2M EUR are registered.

We can picture this as follows:

Lower/left truncation: deductible, reinsurance.

Upper/right truncation: earthquake magnitudes.

How would you tackle this left-truncation in secura when fitting a loss distribution to the data?

48 / 79

Be aware of truncation and censoring!

49 / 79

How to find/to construct a global fit of insurance losses?

That's hard, because:

different behaviour of attritional and large losses
(body vs tail).

Typically, no standard parametric distribution provides
suitable global fit:

Lognormal, Weibull, etc. underestimate tail risk
Pareto, Generalised Pareto Distribution (GPD), etc. can
only be used for large losses
complex distributions (e.g. GB2).

Splicing (or composite modeling) offers a useful
strategy to construct a global fit.

Intuitively:

different components on different intervals of losses
glue these components together into a well-defined
density.

This technique is popular e.g. in modelling operational risk
data.

Global fitting distributions

50 / 79

Combine two distributions (one for the body and one for

the tail) in a splicing model:

where is the left-truncation point and the split
point (body vs. tail).

Questions for you:

which in the above should be estimated from the
data?
why the conditional densities, constructed from
original pdf's and on the positive real
line?

Some examples of body-tail fits:

Body Tail

Exponential Pareto

Lognormal Pareto

Weibull Pareto

Mixture of two exponentials Generalised Pareto

Splicing: a body-tail example

f(x; Θ) =

⎧⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

0 if x < tl

π if tl ≤ x ≤ t

(1 − π) if x > t,

f ∗
1 (x;t,Θ1)

F ∗
1 (t;Θ1)−F ∗

1 (tl;Θ1)

f ∗
2 (x;t,Θ2)

1−F ∗
2 (t;Θ1)

tl t

f ∗
1 (.) f ∗

2 (.)

51 / 79

A body-tail fit for the Secura Re losses
Let's combine an exponential (body - below threshold) and a Pareto (tail - above)

with

 and the PDF and CDF of an exponential distribution

 and the PDF and CDF of a Pareto distribution with unit scale

t t

f(x) =

⎧⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

0 x ≤ tl

π ⋅ tl ≤ x ≤ t

(1 − π) ⋅ x > t

,
f ⋆

1 (x)

F ⋆
1 (t)−F ⋆

1 (tl)

f ⋆
2 (x)

1−F ⋆
2 (t)

f ⋆
1 F ⋆

1

= = ,
f ⋆

1 (x)

F ⋆
1 (t) − F ⋆

1 (tl)

λ exp{−λx}

exp{−λ ⋅ tl} − exp{−λ ⋅ t}

λ exp{−λ(x − tl)}

1 − exp{−λ(t − tl)}

f ⋆
2 F ⋆

2

= .
f ⋆

2 (x)

1 − F ⋆
2 (t)

x− −11
γ

1
γ

t− 1
γ

52 / 79

Techniques from extreme value theory (EVT) are
necessary to estimate split point above which a Pareto
distribution is plausible.

A first visual tool is the mean excess plot:

the mean excess function or mean residual life
function is

empirically, using a sample

the mean excess plot evaluates the above at values
, the th largest observation.

The {ReIns} package implements many useful functions
from this book:

Choice of threshold

e(t) = E(X − t|X > t)

(x1, … ,xn)

ên(t) = − t.
∑n

i=1 xi1(t,∞)(xi)

∑n
i=1 1(t,∞)(xi)

t = xn−k,n (k + 1)

53 / 79

Via {ReIns} we can easily plot the mean excess function:

library(ReIns)
ReIns::MeanExcess(secura$Loss)

By default, the mean excess scores are plotted as a
function of the data k = FALSE .

You can also plot these as function of the tail parameter k
= TRUE .

The mean excess function of an EXP distribution is
constant, then:

HTE ('Heavier than exponential'), mean excess

function ultimately increases

LTE ('Lighter than exponential'), when mean excess

function ultimately decreases.

54 / 79

A second visual tool is a QQplot, e.g. the Exponential
QQplot:

recall with

then for

use and plot

ReIns::ExpQQ(secura$Loss)

Fλ(x) = 1 − exp (−λx) x > 0

Qλ(p) = − log (1 − p)1
λ

p ∈ (0, 1)

pi,n := i/(n + 1)

(− log (1 − pi,n),xi,n).

55 / 79

A second visual tool is a QQplot, e.g. the Pareto QQplot:

recall with

then for

use and plot

A distribution is of Pareto-type when the Pareto QQplot is
ultimately linear near the largest observations.

ReIns::ParetoQQ(secura$Loss)

Fγ(x) = 1 − x−1/γ x > 0

− log (1 − p) = logx1
γ

p ∈ (0, 1)

pi,n := i/(n + 1)

(− log (1 − pi,n), logxi,n).

56 / 79

We estimate the slope of the Pareto QQplot to the right of
the reference point

This slope can be expressed as

When the data has a Pareto tail the Hill plot becomes
linear.

But mind the bias and variance trade off!

H <- ReIns::Hill(secura$Loss, k = FALSE,
 lwd = 2, plot = TRUE, main = "")

Choice of threshold - the Hill estimator

(− log (), logxn−k,n).
k + 1

n + 1

Hk,n =
k

∑
j=1

logXn−j+1,n − logXn−k,n.
1

k

57 / 79

We estimate the slope of the Pareto QQplot to the right of
the reference point

This slope can be expressed as

When the data has a Pareto tail the Hill plot becomes
linear.

But mind the bias and variance trade off!

H <- ReIns::Hill(secura$Loss, k = TRUE,
 lwd = 2, plot = TRUE, main = "")

Choice of threshold - the Hill estimator

(− log (), logxn−k,n).
k + 1

n + 1

Hk,n =
k

∑
j=1

logXn−j+1,n − logXn−k,n.
1

k

58 / 79

The Hill plot shows many possible estimates for in the
Pareto distribution that we want to use
for the tail of the distribution.

How to pick the split point?

We consider the Asymptotic Mean Squared Error of
(i.e. variance + squared bias).

We plot

and pick the that minimizes the AMSE.

H <- ReIns::Hill(secura$Loss, lwd = 2, plot = TRUE,
 main = "")
kopt <- ReIns::Hill.kopt(secura$Loss,
 plot = FALSE)$kopt
abline(v = kopt, lwd = 2, lty = 2)

γ

F(x) = 1 − x−1/γ

Hk,n

(k, ÂMSE(Hk,n)); k = 1, … ,n − 1}

k

59 / 79

Using these insights from EVT we arrive at a final choice
for the split point or threshold .

We pick the optimal by minimizing AMSE of the Hill
estimator.

Then, the corresponding split point or threshold
, the th largest observation in the

sample.

This reasoning also gives via the corresponding .

sample size
n <- length(secura$Loss)
n
[1] 371

Hill estimator
kopt <- Hill.kopt(secura$Loss, plot = FALSE)$kopt
kopt
[1] 95

chosen threshold
threshold <- sort(secura$Loss)[n - kopt]
threshold
[1] 2580026

estimate for gamma using Hill estimator
gamma <- H$gamma[kopt]
gamma
[1] 0.2710874

t

k

t := Xn−k,n (k + 1)

γ̂ Hk,n

60 / 79

Exponential - Pareto splicing model
We are now ready to fit the body-tail model proposed earlier on:

with

 and the PDF and CDF of an exponential distribution

 and the PDF and CDF of a Pareto distribution with unit scale

f(x) =

⎧⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

0 x ≤ tl

π ⋅ tl ≤ x ≤ t

(1 − π) ⋅ x > t

,
f ⋆

1 (x)

F ⋆
1 (t)−F ⋆

1 (tl)

f ⋆
2 (x)

1−F ⋆
2 (t)

f ⋆
1 F ⋆

1

= = ,
f ⋆

1 (x)

F ⋆
1 (t) − F ⋆

1 (tl)

λ exp{−λx}

exp{−λ ⋅ tl} − exp{−λ ⋅ t}

λ exp{−λ(x − tl)}

1 − exp{−λ(t − tl)}

f ⋆
2 F ⋆

2

= .
f ⋆

2 (x)

1 − F ⋆
2 (t)

x− −11
γ

1
γ

t− 1
γ

61 / 79

In fact, we now have meaningful choices/estimates for:

 left truncation point at 1.2M EUR

 the split point estimated at threshold

threshold
[1] 2580026

the Hill estimator in gamma

gamma
[1] 0.2710874

the fraction of losses below the split point

(p <- sum(secura$Loss <= threshold)/n)
[1] 0.7439353

or

(n-kopt)/n
[1] 0.7439353

tl

t

62 / 79

sh <- 1200000 # shift
I <- secura$Loss <= threshold # indicator

neg.loglik <- function(par) {
 lambda <- exp(par[1]); alpha <- exp(par[2])
 # likelihood
 L <- I * (n-kopt)/n * lambda * exp(-lambda*(secura$Loss-sh))/(1 - exp(-lambda*(threshold-sh))) +
 (1-I) * kopt/n * alpha * (secura$Loss)^(-alpha-1)/(threshold)^(-alpha)
 # negative log-likelihood
 -sum(log(L))
}

m1 <- mean(secura$Loss)
par.init <- c(1/(m1-sh), 1/m1)
oo <- nlm(neg.loglik, log(par.init))
(lambda <- exp(oo$estimate[1]))
[1] 6.710413e-07
(alpha <- exp(oo$estimate[2]))
[1] 3.688812
(gamma <- 1/alpha)
[1] 0.27109

63 / 79

By working out the integrals starting from the spliced density, we find:

for :

and for we find

Note the different expressions for the CDF for the different ranges of values!

tl = 1, 200, 000 ≤ x ≤ t

F(x) = π ⋅ .
1 − exp{−λ(x − 1,200,000)}

1 − exp{−λ(t − 1,200,000)}

x > t

F(x) = 1 − (1 − π)()
−

.
x

t

1
γ

x

64 / 79

Following function can be used the compute the CDF of the spliced distribution (try the integrals!)

CDF for Exp-Pa splicing model
ExpPa_cdf <- function(x, sh, threshold, lambda, gamma) {

 p <- numeric(length(x))

 p[x <= threshold] <- (n - kopt) / n * pexp(x[x <= threshold] - sh, rate = lambda) /
 pexp(threshold - sh, rate = lambda)

 p[x > threshold] <- 1 - kopt / n * (x[x > threshold] / threshold) ^ (-1/gamma)

 return(p)
}

65 / 79

To assess the GoF of the fitted spliced distribution, we plot the empirical CDF together with the fitted CDF.

66 / 79

What if it is not straightforward to find a suitable
distribution for the body of the data?

Mixtures of Erlangs:

versatile class of distributions, i.e. dense in the space
of positive, continuous distributions
mathematically tractable
fitting procedure in {ReIns} package.

But, a ME distribution has an exponential tail, thus no
heavy tails!

More details in Verbelen et al. (2015, ASTIN Bulletin).

The pdf of a mixture of Erlangs:

with number of Erlangs , mixing weights , common
scale and positive integer shape parameters

.

The mixing weights should satisfy and .

Question for you: the Erlang distribution may remind you
of a better known distribution among actuaries. Which
one?

A mixture of Erlangs for the body

fX(x; α, r, θ) =
M

∑
j=1

αjfE(x; rj, θ)

=
M

∑
j=1

αj ,
xrj−1e−x/θ

θrj(rj − 1)!

M α

θ

(r1, … , rM)

αj > 0 ∑
j
αj = 1

67 / 79

https://katrienantonio.github.io/portfolio/loss-models

Fit ME model using internal function from
ReIns package
MEfit_sec <- ReIns:::.ME_tune(secura$Loss,
 trunclower = sh,
 criterium = "BIC",
 M = 10,
 s = 1:40)$best_model

Fitted parameters
MEfit_sec$alpha
[1] 0.9707281 0.0292719
MEfit_sec$shape
[1] 5 16
MEfit_sec$theta
[1] 359731.4

68 / 79

ME_VaR <- Vectorize(ReIns:::.ME_VaR,
 vectorize.args = "p")

QQ-plot
plot(ME_VaR((1:n) / (n+1), theta = MEfit_sec$theta,
 shape = MEfit_sec$shape,
 alpha = MEfit_sec$alpha,
 trunclower = sh),
 sort(secura$Loss),
 main = "ME QQ-plot",
 xlab = "Fitted quantiles",
 ylab = "Empirical quantiles")
abline(0, 1)

69 / 79

Next, we combine what we learned on splicing with the
Mixture of Erlangs distribution, to construct a ME-Pa
splicing model with the splicing point threshold
estimated earlier on.

Again, we start from Erlangs in the mixture part
for the body.

Fit ME-Pa splicing model
splicefit_sec <- ReIns::SpliceFitPareto(
 secura$Loss,
 tsplice = threshold,
 M = 10,
 trunclower = sh)

Summary
summary(splicefit_sec)

How would you describe the resulting model?

--
Summary of splicing fit
--

const = 0.744

pi = (0.744, 0.256)

t0 = 1 200 000

t = 2 580 026

type = (ME, Pa)

*

p = 1

r = 7

theta = 249 142

M = 1

M_initial = 10

*

gamma = 0.271

endpoint = Inf

M = 10

70 / 79

The first way to assess the GoF is a plot of the ECDF and
the fitted CDF.

ECDF plot
x <- seq(10^6, 10^7, 10^3)
SpliceECDF(x, secura$Loss, splicefit_sec, lwd = 2)
abline(v = splicefit_sec$t, lty = 2, lwd = 2)

Zoomed ECDF plot
SpliceECDF(x, secura$Loss, splicefit_sec,
 lwd = 2, ylim = c(0,0.3))
abline(v = splicefit_sec$t, lty = 2, lwd = 2)

71 / 79

The first way to assess the GoF is a plot of the ECDF and
the fitted CDF.

ECDF plot
x <- seq(10^6, 10^7, 10^3)
SpliceECDF(x, secura$Loss, splicefit_sec, lwd = 2)
abline(v = splicefit_sec$t, lty = 2, lwd = 2)

Zoomed ECDF plot
SpliceECDF(x, secura$Loss, splicefit_sec,
 lwd = 2, ylim = c(0,0.3))
abline(v = splicefit_sec$t, lty = 2, lwd = 2)

72 / 79

Additionally, a PP-plot can be used which plots the
empirical survival function vs. the fitted survival function.
To focus on the tails, a version with minus log-scale is also
used, i.e.

PP-plot
SplicePP(secura$Loss, splicefit_sec)
PP-plot with minus log-scale
SplicePP(secura$Loss, splicefit_sec, log = TRUE)

− log(1 − F̂ (xi,n)) vs. − log(1 − F(xi,n)).

73 / 79

Finally, a QQ-plot can be used again.

QQ-plot
SpliceQQ(secura$Loss, splicefit_sec)

74 / 79

Risk measures
Some popular risk measures are

Value-at-Risk

Value-at-Risk quantifies tail events.

Conditional Tail Expectation

Conditional Tail Expectation quantifies the expected severity of tail events (what if?).

V aR1−p = F −1(1 − p)

CTE1−p = E(X ∣ X > V aR1−p)

= ∫
1

1−p

V aRγ(X)dγ.
1

p

75 / 79

The CDF is found by integrating the density: The quantile function is obtained by inverting the CDF:

where and denote the quantile functions of the
body resp. tail distribution used in the splicing model.

Risk measures for a body-tail fit
We give a general expression for the CDF and quantile function for the body-tail model:

f(x) =

⎧⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

0 x ≤ tl

π ⋅ tl ≤ x ≤ t

(1 − π) ⋅ x > t

f ⋆
1 (x)

F ⋆
1 (t)−F ⋆

1 (tl)

f ⋆
2 (x)

1−F ⋆
2 (t)

F(x) =

⎧⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪⎩

0 x ≤ tl

π ⋅ tl ≤ x ≤ t

π + (1 − π) ⋅ x > t

F ⋆
1 (x)−F ⋆

1 (tl)

F ⋆
1 (t)−F ⋆

1 (tl)

F ⋆
2 (x)−F ⋆

2 (t)

1−F ⋆
2 (t)

F −1(p) = {
Q∗

1 (⋅ (F ⋆
1 (t) − F ⋆

1 (tl)) + F ⋆
1 (tl)) 0 ≤ p ≤ π

Q∗
2 (⋅ (1 − F ⋆

2 (t)) + F ⋆
2 (t)) π ≤ p ≤ 1

p

π

p−π

1−π

Q∗
1 Q∗

2

76 / 79

Risk measures for a body-tail fit
Quantile function for Exp-Pa splicing model
ExpPa_quantile <- function(p, sh, threshold, lambda, gamma) {

 pi <- (n-kopt)/n

 x <- numeric(length(p))

 x[p <= pi] <- qexp(p[p <= pi] / pi * (pexp(threshold, rate = lambda) - pexp(sh, rate = lambda)) +
 pexp(sh, rate = lambda), rate = lambda)

 x[p > pi] <- threshold * (1 - (p[p > pi] - pi) / (1-pi))^(-gamma)

 return(x)
}

77 / 79

95% Value-at-Risk

ExpPa_quantile(0.95, sh, threshold, lambda, gamma)
[1] 4017259

and check

ExpPa_cdf(ExpPa_quantile(0.95, sh,
 threshold,
 lambda, gamma),
 sh, threshold, lambda, gamma)
[1] 0.95

95% Conditional Tail Expectation

qf <- function(p) {
 ExpPa_quantile(p, sh, threshold, lambda, gamma)
}

int <- integrate(qf, lower = 0.95, upper = 1)
int$value / 0.05
[1] 5511323

The {ReIns} package has built-in functions to calculate
these (and other) risk measures for the ME-Pa spliced fit,
see e.g. ReIns::VaR(p, splicefit_sec) and ReIns::CTE(p,
splicefit_sec) .

Risk measures for a body-tail fit

78 / 79

Thanks!

Slides created with the R package xaringan.

Course material available via

 https://github.com/katrienantonio/workshop-loss-reserv-fraud

79 / 79

https://github.com/yihui/xaringan
https://github.com/katrienantonio/workshop-loss-reserv-fraud

